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A Statistical Framework for the Sensitivity
Analysis of Radiative Transfer Models
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Abstract—Process models are widely used tools, both for study-
ing fundamental processes themselves and as elements of larger
system studies. A radiative transfer model (RTM) simulates the
interaction of light with a medium. We are interested in RTMs
that model light reflected from a vegetated region. Such an RTM
takes as input various biospheric and illumination parameters
and computes the upwelling radiation at the top of the canopy.
The question we address is as follows: Which of the inputs to the
RTM has the greatest impact on the computed observation? We
study the leaf canopy model (LCM) RTM, which was designed
to study the feasibility of observing leaf chemistry remotely. Its
inputs are leaf chemistry variables (chlorophyll, water, lignin, and
cellulose) and canopy structural parameters (leaf area index, leaf
angle distribution, soil reflectance, and sun angle). We present a
statistical approach to the sensitivity analysis of RTMs to answer
the question previously posed. The focus is on global sensitivity
analysis, studying how the RTM output changes as the inputs vary
continuously according to a probability distribution over the input
space. The influence of each input variable is captured through
the “main effects” and “sensitivity indices.” Direct computation
requires extensive computationally expensive runs of the RTM.
We develop a Gaussian process approximation to the RTM output
to enable efficient computation. We illustrate how the approach
can effectively determine the inputs that are vital for accurate
prediction. The methods are applied to the LCM with seven
inputs and output obtained at eight wavelengths associated with
Moderate-resolution Imaging Spectroradiometer bands that are
sensitive to vegetation.

Index Terms—Gaussian process (GP), main effects, Moderate
resolution Imaging Spectroradiometer (MODIS), radiative trans-
fer model (RTM), sensitivity analysis, sensitivity index.

I. INTRODUCTION

THE ACCURATE estimation of the properties of the
biosphere is critical for our understanding of the Earth’s

coupled system. The atmosphere, oceans, and land comprise
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a complex coupled dynamical system and the valid statistical
prediction of the properties of this system, and its changes,
require inputs that are both accurate and have their uncertainties
accurately quantified.

The study of the biosphere is dependent on models—
mathematical abstractions of the systems themselves, which
are sufficiently simplified to allow for mathematical or com-
putational analysis in reasonable amounts of time. The study of
these models can give important information about the systems
being modeled, but shortcomings in the models, where they
differ from reality, must not be overlooked. Models will have
limitations due to the modeling philosophy chosen—the set of
simplifying assumptions used by the scientist. Indeed, model-
ing uncertainty comes from a combination of the ignorance of
natural variability and the impossibility of precisely modeling
the physical phenomena being studied.

The behavior of these models with respect to their inputs
is the subject of this paper. Analyzing the uncertainty char-
acteristics of a model is a crucial first step in the use of the
model for prediction and inversion. It gives information about
the influence of the inputs, both individually and in groups, on
the model output and can give information as to the potential of
successfully performing model inversion.

In many cases, the model inputs are not easily observable.
Instead, the model outputs are measured, and the model inputs
must be inferred. Global models require global observation as
inputs, and the only effective method for making routine global
measurements is via sensors mounted on orbiting satellites.
Typically, however, satellite-mounted sensors do not measure
directly the quantity of interest. Passive visible/near infrared
sensors measure upwelling radiation, and it is from these mea-
surements that the biospherical parameters of interest must be
inferred.

This inference process is complex. It is the inversion of
the process of sunlight passing through the atmosphere, be-
ing reflected off vegetation on the ground, and then passing
again through the atmosphere before being detected by the
satellite-mounted sensor. The dominant sources of uncertainty
in this scenario are the uncertain process models that enter
the estimation. The uncertainty due to the process models
will almost certainly be much larger than the uncertainty due
to noise in the sensor [1]. The Moderate resolution Imaging
Spectroradiometer (MODIS) [2] has an SNR of between 74
and 910 in the near infrared bands [3] and is radiometrically
very well calibrated in other bands [4], [5]. In the brief outline
aforementioned, we have two models, one for the propagation
of light through the atmosphere and the second for the reflection
of light by the vegetation on the ground. It is the uncertainty
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characteristics of the second of these process models that we
will analyze in this paper.

Analyzing, quantifying, and reporting the uncertainty in re-
mote sensed data products is of great importance. It is the only
way in which the uncertainty of further analyses using these
data products as inputs can be quantified. Analyzing the source
of the data product uncertainties can identify where the models
must be improved or where better input information must be
obtained. Both of these aspects are known; the editorial for the
Special Issue on Global Land Product Validation [6] wrote:

users need access to quantitative information on product
uncertainties

and that
[m]aking quantified accuracy information available to the
user can ultimately provide developers the necessary feed-
back for improving the products.
The work in this paper is intended to contribute to this larger

goal. We provide tools to allow model builders to better analyze
the characteristics of the models that will subsequently be used
for inversion. Developments of the tools we provide here will
also allow for the characterization of the uncertainties in the
inverse process.

There has been significant work toward the goals outlined
above, but there is still much to be done. For example, the
current MODIS Leaf Area Index (LAI)/fraction of Photosyn-
thetically Active Radiation algorithm has been improved con-
tinuously since the satellite’s launch. The main improvements
have been in the use of a better biome map (reducing the
uncertainty in that input), improvements in atmospheric correc-
tion, and improved models of surface reflectance from different
biomes [7].

These improvements have reduced the uncertainty in the
resulting data product, but have not necessarily improved the
quantification of the uncertainties and have not specifically
addressed the statistical identification of the sources of the
uncertainties. Here, we will address one aspect of this overall
process. Models of surface reflectance are typically radiative
transfer models (RTMs). We analyze in detail the effects of
the inputs to an RTM in terms of the sensitivity of the RTM’s
output to each of the inputs. Specifically, we analyze the leaf
canopy model (LCM) RTM [8], used as a surrogate for the
RTM used as the basis for the MODIS production algorithm
[9]. See Section II for a discussion of the LCM. In Section III,
we use and develop methods from the statistical literature on
sensitivity analysis [10] to compute the main effects, which
graphically show the relative importance of each input on
the RTM output, and the sensitivity indices, which give a
measure of the expected amount by which the uncertainty in
the output would be reduced if the true value of the input
was known.

A 1999 paper, [11], discussed the state of sensitivity analysis
in the remote sensing and geoscience domains. At that time, the
analyses were typically very basic, looking only at one variable
at a time, and based around a fixed operating point. A number
of suggestions as to better methods were made, principally the
Fourier Amplitude Sensitivity Test [10]. This suggestion does
not seem to have been adopted—the number of papers that
cite [11] is small, and the number that adopt the suggestions,

smaller still. For example, [12] uses ideas from the design of
experiments, but does not compute sensitivity indices. While
discussing sensitivity indices, the analysis in [13] is based on
local sensitivity computations. In [14], sensitivity indices are
computed, but the methods used required large numbers of
model runs. In this paper, we give explicit, computationally
efficient methods for computing the main effects and sensitivity
indices, as part of a global sensitivity analysis.

Computing the main effects and sensitivity indices requires
the evaluation of multidimensional integrals over the input
space of the model. Evaluating RTMs can be computation-
ally expensive, and therefore, standard numerical integration
methods (e.g., multidimensional quadrature or Monte Carlo
integration) would be computationally prohibitive in terms of
the number of times the RTM would have to be run. Instead, we
adopt the approach of approximating the RTM by a Gaussian
process (GP) model [15]–[17], a technique known in the sta-
tistical literature as emulation. A GP provides a very flexible
nonparametric function approximation that has found wide
application as a replacement for neural networks [15]. Early
work involving GP response-surface approximations for the
analysis of computer experiments includes [18]–[20]. We refer
to [21] for background and further references. The GP model
approximation can be constructed using a comparatively small
number of carefully chosen RTM evaluations. See Section IV.
Using the GP approximation instead of the actual RTM will
introduce uncertainty into the evaluation of the main effects and
the sensitivity indices, but this can also be quantified [22]. See
Section V. The GP emulator, being a fully specified statistical
model, is amenable to further analysis in ways that a set of
sample responses of an RTM, or even the implementation of the
RTM as a piece of software, is not. It allows for calibration and
validation of the model in a principled statistical manner and as
the likelihood in a statistical treatment of the model inversion.
See [23], [24], and Section VII. The GP emulator provides a
unifying framework for this and other problems.

Finally, in Section VI, we present the main effects and
sensitivity indices for the LCM RTM and show how they enable
the identification of the relative importance of each input to the
model output. This also gives information as to how well these
inputs can be predicted from observations of the model output
at different wavelengths.

II. COUPLED LEAF-CANOPY RTM

Over the past decade, in collaboration with the Ecosystem
Science and Technology Branch at NASA Ames, the
Vegetation Modeling Transport Group (University of Arizona)
has developed a coupled Leaf-Canopy Model (LCM) in order
to capture the essential biophysical processes associated with
the interaction between light and vegetation [8]. LCM was
developed to provide a tool to aid in remote sensing as applied
to ecosystem dynamics in support of the TERRA platform,
and it is specifically used to investigate the feasibility of ob-
serving chemistry remotely. The model combines two different
RTMs, one at leaf level (LEAFMOD) and one at canopy level
[CANopy Model (CANMOD)] to predict the radiative regime
inside the vegetation canopy under consideration.
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LEAFMOD [25] is the model that simulates the radiative
regime inside the single leaf. From a morphological point of
view, the leaf element is an extremely complex and rich object.
Any model that attempts to describe each single interaction
process for the light moving in such a medium will face this
enormous complexity. The strength of the LEAFMOD algo-
rithm is its simplicity through natural averaging. The model
relies on the fact that, while light is moving in a complicated
medium, natural averaging occurs in such way that the sim-
pler assumption of isotropic scattering and uniform absorption
seems to capture the transport effects. Moreover, the model has
the ability to include chemistry as a key element dominating
the absorption process. Different concentrations of chlorophyll,
water, lignin, and cellulose can be specified to model the optical
properties of the single leaf species. The model is calibrated
over the LOPEX leaf species archive [26], where experimental
leaf property data are stored. The calibration occurs in the sense
that the optical properties required by the canopy model are
retrieved through a procedure that uses the LOPEX archive as
input data.

Although LEAFMOD has been specifically designed and
implemented to be coupled with the canopy model (CANMOD,
see the following), it can also be used as a stand-alone mod-
ule to describe the radiative transfer of photons within leaf
media as functions of their morphological structure and bio-
chemical signature. In early deterministic models, two-stream
models were used to determine the radiative transfer within
leaf structures. The so-called Kubelka–Munk (KM) theories
[27] treat the leaf as a plane parallel medium, tacitly assume
the scattering to be nearly isotropic, and assume weak volume
absorption within leaves. By modeling the transport of photons
as a diffusion process, the computed radiance is subject to
large errors in optically thin media and/or in highly absorbing
regions [28]. To overcome some of the difficulties associated
with KM theories, PROSPECT [29] was established. Within
the PROSPECT framework, the leaf is assumed to be modeled
as a sequence of transparent plates, each assumed to be rough
Lambertian reflectors. Each plate defines the optical properties
of the interior of the leaves. Scattering is described by a
spectral index of refraction and a parameter describing the leaf
mesophyll structure. The absorption coefficients for leaf water
and pigments are generally fitted using experimental data, i.e.,
leaf reflectance and transmittance. By contrast, LEAFMOD
relies on rigorous first principles, i.e., the balance of photons.
LEAFMOD’s advantage stems from the fact that the overall
leaf biochemistry can be easily specified and the scattering
coefficient calibrated via experimental data and direct model
inversion [30].

The CANMOD algorithm [8], [31] takes the information
coming from LEAFMOD regarding the single leaf character-
istics (transmittance and reflectance) and, together with canopy
structural parameters [LAI and leaf angle distribution (LAD)],
soil reflectance, and sun angle inclination, computes, at any
given wavelength, the radiative regime within and at the top
of the canopy by solving a radiative transfer equation. The
strengths of the model are simplicity and the ability to take into
account leaf chemistry, which is important to properly describe
the light absorption environment.

Fig. 1. LCM flow chart.

Fig. 1 shows a flowchart that demonstrates the operation
of the coupled algorithm. The algorithm can be explained as
follows. The first module uses LEAFMOD in the forward and
inverse modes to compute the leaf optical properties (i.e., leaf
reflectance and transmittance). The second module uses the
CANMOD forward mode to compute the spectral canopy hemi-
spherical reflectance factor. The code requires the specification
of the input parameters. In addition to the parameters listed in
Table I, the model also takes as input wavelength (between
400 and 2100 nm), canopy architecture (LAD) and the sun
angle. CANMOD is able to handle four discrete typologies
of LAD, namely, planophile (leaves mainly horizontal), erec-
tophile (leaves mainly vertical), plagiophile (leaves mainly at
45◦), and extremophile (leaves mainly both horizontal and ver-
tical). LAD is determined largely by knowledge of the biome.
Its inference from observational data is difficult [32].

Note that the soil reflectance depends on the wavelength.
Indeed, usually, the spectral soil reflectance is specified de-
pending on the type of soil of interest. We assumed a typical
visible/near infrared spectrum for a dry soil, and we considered
a multiplicative brightness parameter varying between 0.3 and
1.3 (see Table I) to account for the possible variations of the
background (soil) reflectance level [33]. This multiplicative
parameter is assumed to be wavelength independent.

Once the leaf type is specified, the LOPEX database contains
the measured leaf optical properties for the leaf of interest. Nev-
ertheless, we can tune the canopy by considering leaves that are
of the same type but with different biochemistry and thickness.
This gives the code great flexibility in modeling the effect of
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TABLE I
RANGES OF VALUES OF THE INPUTS TO THE LCM. LAI AND WATER

FRACTION ARE DIMENSIONLESS. THE SOIL PARAMETER IS

MULTIPLIED BY A STANDARD SOIL SPECTRUM. SEE TEXT

biochemistry on the overall canopy reflectance. The algorithm
begins by analyzing the leaf under consideration. Assume, for
example, that the canopy of interest is a maple canopy. The
LOPEX database is accessed to retrieve the measured spectral
reflectance and transmittance for a nominal maple leaf. Note
that, as before, because the wavelength is set, reflectance and
transmittance for the nominal leaf are selected for the specific
wavelength of interest. The LEAFMOD inverse mode accepts
the reflectance and transmittance and retrieves scattering and
absorption coefficients. It is assumed that, to first order, the
scattering depends on the anatomical structure of the leaf,
whereas the absorption depends only on the biochemical com-
ponents [25]. Thus, the scattering coefficient for maple leaves
is assumed to be the same, and it is retained. A new maple
leaf having the biochemical components and thickness specified
by the inputs is constructed, retaining the same scattering
coefficient and constructing the new absorption coefficient for
the wavelength of interest. Both absorption and scattering co-
efficients are fed to the LEAFMOD forward mode to compute
the reflectance and transmittance of the desired leaf, i.e., the leaf
with thickness, water, chlorophyll, lignin, and protein specified
by the inputs. Reflectance and transmittance are fed to the
second module together with LAI, LAD, soil reflectance, and
sun angle to compute the hemispherical reflectance.

III. SENSITIVITY ANALYSIS

Sensitivity analysis aims to determine how the variation in
the output of a model can be apportioned among the inputs
[21, Ch. 7]. That is, it attempts to determine how much of
the variation seen in the output is due to variation in each of
the inputs. The type of sensitivity analysis we are interested in
here is global statistical sensitivity analysis, looking at how the
output changes as all the inputs vary continuously, rather than
the more common local derivative-based sensitivity analyses,
which look at how the output changes as the inputs are each
varied about a fixed point [34]. Clearly, this latter type of
analysis will give limited information about how the output
varies for substantial changes in the inputs.

How the inputs vary is determined by a probability distribu-
tion that defines the expected distributions of the inputs. Using
v to denote the vector of model inputs, this distribution is H(v).
The actual form of this distribution is problem dependent and
dependent on the amount of knowledge available about each
input variable. It may be that, for some inputs, all that can
be given is a physically plausible range (e.g., water fraction is
limited to the range 0–1), whereas for others, a more precise

distribution may be known (e.g., the distribution of leaf thick-
ness for a particular tree type may be known from field mea-
surements). The distribution H(v) also encodes correlations
between variables that are known to vary together. The authors
in [33] give truncated Gaussian distributions for the variables
in Table I. In this paper, we use the simpler formulation of
independent uniform distributions over the ranges given in
Table I for each input variable.

A. Main Effects

Denote the response of the model to input v as y = f(v).
The function f(v) can be decomposed as

y = f(v) = E(Y ) +
d∑

i=1

zi(vi) +
∑
i<j

zi,j(vi, vj) + · · ·

+z1,2,...,d(v1, v2, . . . , vd) (1)

where v = (v1, . . . , vd) is d-dimensional (with d = 7 in our
sensitivity analysis of the LCM). The first term is the expected
value of f(v), i.e.,

E(Y ) =
∫

vj ,j=1,...,d

f(v)dH(v)

and the next d terms are the main effects, given by

zi(vi) = E(Y |vi) − E(Y )

=
∫

v−i

f(v)d(v−i|vi) − E(Y ) (2)

where v−i denotes all the elements of v except vi. The latter
terms of the decomposition are the interactions. They give
information about the combined influence of two or more inputs
taken together. We will not consider them further in this paper.

Plotting the main effects, zi(vi) for each i gives a visual
impression of the relative importance of each input to the
variation in the output. This visual impression is heightened if
the inputs are normalized (to the range of 0–1, for example, for
uniformly distributed inputs), allowing all the main effects to
be plotted together on the same plot. See Section VI where we
present main effects plots for the LCM RTM.

To compute the main effects requires the evaluation of a
(d − 1)-dimensional integral. For even moderately complex
functions f(v), it will be impossible to evaluate this integral
analytically. Indeed, for most cases of interest, an analytic form
for f(v) does not exist, rather, f(v) only exists as a computer
program. In these cases, zi(vi) must be computed numerically.
If evaluating f(v) for a given v requires appreciable com-
putation, then the standard methods of numerical integration,
multidimensional quadrature and Monte Carlo integration, will
be too computationally intensive to be practical. It is therefore
useful to approximate f(v) in such a way that the integrals
required can be evaluated analytically. This allows the straight-
forward computation of the main effects of the approximation
and also the computation of the uncertainty introduced by the
approximation to f(v). This is given in Sections IV and V; in
particular, the details of the GP approximation we use for f(v)
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are provided in Section IV, and its application to computing the
main effects and sensitivity indices is developed in Section V.

B. Sensitivity Indices

The sensitivity indices are based on the variances of the terms
in the decomposition of f(v) given in (1). Specifically, consider

Vi = Var {E(Y |vi)} = E
[
(E(Y |vi))

2
]
− (E(Y ))2.

This is the expected amount by which the uncertainty in y
will be reduced if we learn the true value of vi [22]. It thus gives
a measure of how much of the variance of y is due to input vi.
The Vi’s can be normalized to

Si = Vi/Var(Y )

so that the sum of all the Si’s and higher order terms (Si,j ,
Si,j,k, etc.) is unity. Thus, the value of Si gives the relative
importance of input vi. The Si’s can also be used to direct
improvements—reducing the uncertainty on the input with
the largest Si will have the greatest effect in reducing the
uncertainty of the model output. This can be used to direct data
collection work.

Computing the Vi’s and Si’s can be complex, even under the
GP approximation to f(v). See Section V for details.

IV. APPROXIMATING THE LCM USING A GP

As discussed in the previous section, computing the main
effects and sensitivity indices requires evaluating multidimen-
sional integrals over arguments that include the RTM response
f(v). There are two approaches available, either evaluating
a numerical approximation of the integral itself or forming
an approximation to the argument of the integral, where the
approximation enables the integrals to be evaluated analytically.
The choice between these two approaches depends on a number
of factors. In terms of the required computation, the tradeoff
is between the numerical evaluation of the integral (typically
via Monte Carlo integration) and the computation required to
estimate the parameters of the approximation.

Regarding the main effects, the direct numerical approxima-
tion of the integrals in (2) requires evaluations of f(v) over a
sufficiently dense grid in v. It will thus typically be feasible
under small to moderate dimensions for the input space and
for computationally reasonable functions f(v) (which is indeed
the case for the LCM). However, even for computationally
inexpensive models f(v), the same approach for the sensi-
tivity indices Vi becomes substantially more challenging to
implement for moderate number of inputs and is, arguably, not
viable for high-dimensional input spaces. This becomes clear
by inspection of the integrals required for the evaluation of the
E[(E(Y |vi))2]; see Appendices I and II. Hence, in general, for
global sensitivity analysis there is clear utility in approximating
the model function f(v) even for computer models that are
relatively inexpensive to evaluate. As a concrete example, in
[35], the analysis of a 10-D fire-propagation model required 106

simulations to perform global sensitivity analysis. By contrast,

a GP emulator can be built using much fewer samples—only
250 were needed to emulate the LCM (see Section VI).

As importantly, looking beyond sensitivity analysis, the con-
struction of a statistical model as an emulator for the model
output f(v) provides scope for different types of practically
important probabilistic analyses of the computer model. This
has been discussed briefly in Section I and is elaborated in
Section VII.

The approximation that we use for the LCM is provided by
a GP. GPs are probability distributions over functions. Rather
than placing a distribution over a (small) set of parameters, a GP
places a distribution directly over the function of interest. Under
a GP probability model for function f(·), the joint distribution
of (f(v1), . . . , f(vk)) is multivariate Gaussian for any finite
set of input points v1, . . . ,vk. It is this property that allows
for tractable computation—whereas the GP is defined over an
infinite dimensional quantity (the continuous function f(v)),
any computation is necessarily done over only a finite set of
locations.

A GP is specified by its mean function E(f(v)) and its
covariance function Cov(f(v), f(v′)). The flexibility of choos-
ing and adapting the mean and covariance functions allows
a GP model to be successfully used to approximate a wide
spectrum of functions f(v), based on a set of training examples,
d = {y,x1, . . . ,xn}, where y = (y1, . . . , yn) and yi is the
response f(xi) at observed input point xi, i = 1, . . . , n. The
set of training examples is chosen carefully to optimally sample
the input space. Here, we used a Latin Hypercube design [36]
to choose the set of inputs to the LCM. The other choices made
were to use a constant mean function E(f(v)) = μ, a constant
variance Var(f(v)) = σ2, and the product Gaussian correlation
function

Corr (f(v), f(v′);θ) = exp

(
−

d∑
�=1

(v� − v′
�)

2

γ�

)

where θ = (γ1, . . . , γd) and d is the dimension of the input
space. The γ parameters give a measure of the scale over which
the function f(v) varies in each input dimension, and σ2, the
variance of the GP, determines the overall scale of f(v). Using
these mean and correlation functions, the GP defines the joint
distribution

p(y|θ, μ, σ2)=
1

(2πσ2)n/2|C(θ)|1/2

× exp
(
− 1

2σ2
(y−μ1n)TC−1(θ)(y−μ1n)

)
(3)

where C(θ) is the correlation matrix with (i, j)th element
Corr(f(xi), f(xj);θ) and 1n denotes an n-dimensional vector
with all elements equal to one.

We use the set of training examples d to estimate the param-
eters {θ, μ, σ2} of the GP model using maximum likelihood
estimation. From (3), the log likelihood is

L = − 1
2σ2

(y − μ1n)T C−1(θ)(y − μ1n)

−1
2

log |C(θ)| − n

2
log(2πσ2). (4)
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The derivatives of L with respect to each of the parameters can
be straightforwardly derived [16]. Maximizing L results in a
point estimate for the parameters, denoted by {θ̂, μ̂, σ̂2}, that
we use when evaluating the main effects. Note that using point
estimates for these parameters will cause the uncertainty of the
main effects to be underestimated. In future work, we will con-
sider a fully inferential Bayesian approach where expectations
are also taken with respect to these parameters.

Once the GP model parameters are estimated, the first
quantities of interest are the predictive distributions for sets
of new inputs, conditioned on the training examples. From
the definition of the GP, these distributions will be Gaussian.
For a single new input v, the predictive distribution for f(v)
has mean

m ≡ m(v; μ̂, θ̂,d) = μ̂ + rT (v)C−1(y − μ̂1n)

and variance

S ≡ S(v; μ̂, σ̂2, θ̂,d) = σ̂2
(
1 − rT (v)C−1r(v)

)
.

Here, r(v) is the n × 1 vector with ith element given by
Corr(f(v), f(xi)) = exp(−

∑d
�=1(v� − xi�)2/γ̂�), and C ≡

C(θ̂) is the observed n × n correlation matrix with (i, j)th
element given by exp(−

∑d
�=1(xi� − xj�)2/γ̂�). Recall that the

xi’s are the input values of the training examples.
The joint predictive distribution for (f(v), f(v′)) cor-

responding to generic inputs v = (v1, . . . , vd) and v′ =
(v′

1, . . . , v
′
d) is bivariate normal with (2 × 1) mean vector

w = μ̂12 + RT (v,v′)C−1(y − μ̂1n) (5)

and (2 × 2) covariance matrix

W = σ̂2
(
B(v,v′) − RT (v,v′)C−1R(v,v′)

)
(6)

where B(v,v′) is the (2 × 2) observed correlation ma-
trix for (f(v), f(v′)) with off-diagonal element given by
exp(−

∑d
�=1(v� − v′

�)
2/γ̂�), and R(v,v′) is the (n × 2) ma-

trix with first-column elements exp(−
∑d

�=1(v� − xi�)2/γ̂�),
i = 1, . . . , n, and analogously for the second-column elements
replacing v� with v′

�.

V. APPROXIMATING THE MAIN EFFECTS AND SENSITIVITY

INDICES USING THE GP APPROXIMATION TO THE LCM

Computing the main effects requires the evaluation of
E(Y |vj), for j = 1, . . . , d, and E(Y ), as indicated in (2). How-
ever, we recall that we are approximating the function y = f(v)
by a GP model, and we must account for this approximation
by computing E∗{E(Y |vj)} and E∗{E(Y )}, where we use
E∗{ }, Var∗{ }, and Cov∗{ } to indicate expectation, variance,
and covariance, respectively, with respect to the GP predictive
distributions. We give details of these quantities here.

For the global mean, we have

E(Y ) =
∫
v

f(v)
d∏

�=1

dH�(v�)

where H(v) =
∏d

�=1 H�(v�) is the input distribution, com-
prising independent components H�(v�), which are uniform
distributions over ranges (a�, b�), � = 1, . . . , d. Therefore

E∗ {E(Y )} =
∫

E(Y )dN(f(v);m,S)

=
∫
v

m(v)
d∏

�=1

dH�(v�)

=
∫
v

{
μ̂ + rT (v)C−1(y − μ̂1n)

} d∏
�=1

dH�(v�)

= μ̂ + T T C−1(y − μ̂1n) (7)

where T is the n × 1 vector with ith element given by

d∏
�=1

⎧⎨
⎩

b�∫
a�

exp(−(v� − xi�)2/γ̂�)(b� − a�)−1dv�

⎫⎬
⎭ .

Regarding the conditional expectation E(Y |vj), for each
value uj of the jth input, we have

E(Y |uj) =
∫

{v�:� �=j}

f(v1, . . . , uj , . . . , vd)
∏

{�:� �=j}
dH�(v�)

and thus

E∗ {E(Y |uj)}

=
∫

E(Y |uj)dN (f(v1, . . . , uj , . . . , vd);m,S)

=
∫

{v�:� �=j}

m(v1, . . . , uj , . . . , vd)
∏

{�:� �=j}
dH�(v�)

= μ̂ + T T
j (uj)C−1(y − μ̂1n) (8)

where T j(uj) is the (n × 1) vector with ith element given by
the following:

exp
(
− (uj − xij)2

γ̂j

)

×
∏

{�:� �=j}

⎧⎨
⎩

b�∫
a�

exp
(
− (v� − xi�)2

γ̂�

)
1

b� − a�
dv�

⎫⎬
⎭ . (9)

The previous expressions provide point estimates for all main
effects associated with the d inputs. In particular, for each input
j = 1, . . . , d, E∗{E(Y |uj)} can be computed over a grid of
uj values to obtain point estimates for the functions E(Y |uj)
(or for E(Y |uj) − E(Y ) using also E∗{E(Y )}). These esti-
mates can be compared graphically (linear transformations can
be applied so that all inputs are on the same scale).

For a measure of the uncertainty associated with these esti-
mates, we use

Var∗ {E(Y |uj)} = E∗
{

(E(Y |uj))
2
}
− (E∗ {E(Y |uj)})2 .
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TABLE II
WAVELENGTH FOR EACH BAND USED AND THE

CORRESPONDING MODIS BAND NUMBER

Because we already have the expression for E∗{E(Y |uj)}
from the previous derivation, what is needed is an expression
for E∗{(E(Y |uj))2}. This derivation is given in Appendix I,
resulting in

Var∗ {E(Y |uj)} = σ̂2
(
e − T T

j (uj)C−1T j(uj)
)

where e is given by (15) of Appendix I.
The sensitivity indices are defined by

Sj =
Var (E(Y |uj))

Var(Y )
, j = 1, . . . , d.

Computing E∗{Sj} cannot be done analytically, even un-
der the GP approximation; therefore, we approximate it by
computing the ratio of E∗{Var(E(Y |uj))} and E∗{Var(Y )}.
(In future work, we will use a Bayesian approach implemented
via Markov chain Monte Carlo (MCMC) methods [37] to esti-
mate the entire distribution of Sj under the GP approximation,
allowing the uncertainty of the sensitivity indices to also be
determined.) We have

E∗{Var(E(Y |uj))}=E∗
{
E
[
(E(Y |uj))

2
]}

−E∗
{
(E(Y ))2

}
E∗ {Var(Y )}=E∗{E(Y 2)

}
−E∗{(E(Y ))2

}
.

The expressions for these terms are not difficult to derive,
although care is needed. They are given in Appendix II.

VI. RESULTS

The proposed methodology has been applied to execute a
global sensitivity analysis and to analyze both the sensitivity
of the spectral hemispherical reflectance to the defined input
parameters and the relative contribution of each of the parame-
ters to the model output.

To obtain the training data for the GP model, we generated
a 250-point Latin Hypercube design over the 7-D space of
inputs given in Table I. The LAD variable was set to planophile
(leaves mostly horizontal), and the sun angle was set to zenith.
Although the sun angle will vary, for any given satellite scene, it
will be known, and therefore, we do not consider it as one of the
inputs for this analysis. The LAD will be determined largely by
knowledge of the biome of the area being observed. The LCM
was run at eight wavelengths, given in Table II, corresponding
to eight of the MODIS bands that are sensitive to vegetation.
The corresponding MODIS band is also given in Table II. Note

that the bands are in MODIS band order, not in wavelength
order.

Fig. 2 shows the plots of the main effects for the seven input
variables for each of the eight bands. The larger the variation of
the main effect plot, the greater the influence of that input on the
LCM response. To display the main effects for all parameters
on a single plot, the range of each input (given in Table I)
has been normalized to 0–1. The slope of each main effect
plot gives information as to whether the output is an increasing
or decreasing function of that input. The relative scale of the
main effects can be easily compared visually. The absolute
scale depends on the absolute magnitude of the model output.
Fig. 3 shows the main effects for band 4 and includes the
uncertainty bounds due to approximating the LCM by the GP.
The uncertainties are extremely small.

To correctly interpret the results and to put them in the
right perspective, we divide the input parameters in two cate-
gories, i.e., absorption and scattering driven. Biochemical in-
puts, i.e., chlorophyll, water, lignin, and protein are absorption
driven because their effect heavily depends on wavelength,
and they mainly affect the absorption characteristic of vege-
tation canopies [25]. Conversely, LAI, leaf thickness, and soil
brightness can be categorized as scattering driven because they
directly influence the transport of photons in the medium. The
main effects and sensitivity indices are analyzed next.

The LCM is most sensitive to LAI in the near-infrared (NIR)
region of the spectrum (bands 7 and 8). It is shown in Fig. 2 that
the LAI effect is highly nonlinear, and the behavior is such that,
in bands 7, 8, and 3, an increase in LAI produces an increase
in reflectance. Conversely, the effect is opposite in the visible,
i.e., increases in LAI produce a decrease in the hemispherical
reflectance. This trend is known. [38], [39]. The sensitivity
indices (Table III) show that LAI is the major contributor in
the bands which are most sensitive.

Chlorophyll, on the other hand, is expected to be ex-
tremely influential in the visible—it is the prevailing factor
that dominates the reflectance. Its effect is strong in the visible
(bands 1, 2, and 6), whereas it dramatically decreases at the
red edge (band 7) to eventually disappear in the rest of the
spectrum. The decrease of sensitivity to chlorophyll at the red
edge is only found because the MODIS bands do not cover the
actual red edge which is located around 730 nm. Conversely,
chlorophyll does not absorb light after 760 nm. As shown in
Fig. 3, band 4 shows basically no sensitivity for chlorophyll
with small quantified uncertainty in the result.

Water contribution occurs mainly in the short-wave infrared
because it exhibits higher absorption which peaks around 1445
and 1950 nm. Indeed, water is ranked as the second and third
major contributor to the reflectance in bands 5 and 4, respec-
tively. Nevertheless, such bands are outside the atmospheric
window. Conversely, the reflectance is weakly sensitive in the
visible.

Protein is shown to be insensitive to most of the spectrum.
Its effect as well as contribution are extremely small and can be
only detected with difficulties in the NIR (e.g., band 8).

Lignin is one of the major surprising results. It is extremely
sensitive in the short-wave infrared (bands 4 and 5) where it
is also the major contributor to the hemispherical reflectance.
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Fig. 2. Main effects for the LCM RTM.

Fig. 3. Uncertainty in the main effects due to using the GP approximation to
the LCM RTM. Band 4. Line colors as in Fig. 2.

This is mainly due to the strong absorption features in this part
of the spectrum where the lignin absorption coefficient features
a peak around 2110 nm.

Leaf thickness demonstrates a true scattering effect, and its
response shows interesting features. It is mainly sensitive and
has the major contribution in bands 3, 7, and 8. We believe that
what we are seeing is that changing the leaf thickness has more
influence on scattering than on absorption. Specifically, as we
change the leaf thickness, the model assumes that the leaf mass
is unchanged, meaning that the absorption has little effect as
can be seen specifically in the NIR part of the spectrum.

The soil brightness has generally little effect. The spectrum
for a typical soil was spectrally defined, and the brightness
parameter is responsible for increasing the soil hemispherical
reflectance, therefore simulating the dry–wet effect.

TABLE III
SENSITIVITY INDICES FOR EACH INPUT FOR EACH SPECTRAL BAND

That the sensitivity indices do not sum to one indicates that
interaction effects between two or more inputs are important
in some bands, particularly bands 4 and 5. In future work, we
will compute the second-order sensitivity indices that quantify
which interactions are important.

The results described so far are for planophile LAD. We
performed the same analysis for the other LAD values, namely,
erectophile, extremophile, and plagiophile. The results for the
main effects were largely similar, with the main effect for LAI
being less pronounced for erectophile compared to planophile
in bands 4 and 5 and thickness showing less effect in band 7.
That the effect of changing LAD is apparent in the scattering
variables is to be expected.

Tables IV and V show the sensitivity indices for LAI and
thickness for the four LAD values. It is seen that the thickness
input has a larger effect for planophile LAD (particularly in
bands 7 and 8). Variation is seen for LAI when comparing
erectophile LAD to the other values.
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TABLE IV
SENSITIVITY INDICES FOR LAI FOR THE FOUR LAD VALUES.

(PLANOPHILE, ERECTOPHILE, EXTREMOPHILE, AND PLAGIOPHILE)

TABLE V
SENSITIVITY INDICES FOR THICKNESS FOR THE FOUR LAD VALUES

Our results are consistent with, and extend, previous statis-
tically based work. For example, [12] presented a methodol-
ogy for sensitivity analysis based on the design of numerical
experiments aimed at providing a comparison between four
canopy RTMs coupled with a leaf-based RTM (PROSPECT,
[29]). Their results are consistent with ours regarding LAI,
chlorophyll, and soil brightness sensitivity behavior. That the
response in bands 1, 2, and 6 is dominated by LAI and chloro-
phyll is consistent with the results of a much more restricted
sensitivity analysis in [40].

These results show that analyzing the uncertainty character-
istics of RTMs used in remote sensed data product generation
is practical and important. It gives information on the level of
accuracy needed in the model’s inputs, can guide data collection
efforts to most effectively reduce the uncertainties, and can
guide further development effort for the RTMs themselves.
It also gives information as to which of the model’s inputs
affect the output and, hence, which inputs it may be possible
to determine from remotely sensed observations.

VII. FUTURE WORK

In this paper, we have developed a statistical framework
for global sensitivity analysis in RTMs. In doing so, we have
introduced tools that have much wider applicability than the
sensitivity analyses presented here. In particular, the GP em-
ulator approach can be used to address important problems in
model calibration, validation, and inversion.

The remote sensing community spends much effort in col-
lecting field data [41], [42] to calibrate and validate models—to
determine how well a model matches reality and to inform
model improvements. Using the GP emulator approach, we can
model the field data as

ỹj = f(ṽj) + b(ṽj) + εj (10)

where ỹj are the observed field data corresponding to parameter
values ṽj and the εj’s are measurement errors, for example,
independent from an N(0, σ2

ε ) distribution. The response is
composed of two terms, f(·), the GP model based on training

data, as described in Section IV, and b(·), a bias term, a second
GP which models the difference between the model approxi-
mation and the measured field data. (In practice, f(·) and b(·)
are learned simultaneously based on a likelihood function that
comprises both RTM training data and field data.)

The resulting inference for b(·) for different regions of the
input space can quantify the local performance of the model.

The determination of a calibrated, validated model incorpo-
rating the bias term allows a statistical inversion of the model
to be performed, which respects the field data. In the usual
manner, the error between the predictions and the satellite
observations in a number of bands are taken to have a multi-
variate normal distribution. The inversion is regularized by the
inclusion of a prior over LAI, which may depend on spatial
position and biome type. Using the modeling framework in
(10), the tools of statistical inference can be used to estimate
the model inverse and its uncertainties.

The work outlined in this section is in progress and will be
reported when appropriate.

APPENDIX I
VARIANCE OF THE MAIN EFFECTS

We give here the derivation of E∗{(E(Y |uj))2} required in
the expression for Var∗{E(Y |uj)}, which provides a measure
of the uncertainty associated with the estimates of the main
effects.

Note that

(E(Y |uj))2 =

⎛
⎜⎝ ∫
{v�:� �=j}

f(v1, . . . , uj , . . . , vd)
∏

{�:� �=j}
dH�(v�)

⎞
⎟⎠

2

=
∫∫

{v�:� �=j}
{v′

�
:� �=j}

f(v1, . . . , uj , . . . , vd)f(v′
1, . . . , uj , . . . , v

′
d)

×
∏

{�:� �=j}
dH�(v�)

∏
{�:� �=j}

dH�(v′
�)

and thus, we need to take E∗{·} with respect to the GP-based
bivariate predictive distribution for (f(v1, . . . , uj , . . . , vd),
f(v′

1, . . . , uj , . . . , v
′
d)). Specifically

E∗
{

(E(Y |uj))
2
}

=
∫∫

{v�:� �=j}
{v′

�
:� �=j}

E∗ {f(v1, . . . , uj , . . . , vd)

×f(v′
1, . . . , uj , . . . , v

′
d)}

∏
{�:� �=j}

dH�(v�)
∏

{�:� �=j}
dH�(v′

�) (11)

where, using the standard covariance identity

E∗{f(v1, . . . , uj , . . . , vd)f(v′
1, . . . , uj , . . . , v

′
d)}

=Cov∗{f(v1, . . . , uj , . . . , vd), f(v′
1, . . . , uj , . . . , v

′
d)}

+(E∗{f(v1, . . . , uj , . . . , vd)}E∗{f(v′
1, . . . , uj , . . . , v

′
d)}) .

(12)
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Denote by R1 ≡ R1(v1, . . . , uj , . . . , vd) and R2 ≡ R2(v′
1,

. . . , uj , . . . , v
′
d) the first and second columns, respectively, of

the (n × 2) matrix R(v,v′) defined in Section IV. Note that,
here, the input vectors we are working with, (v1, . . . , uj ,
. . . , vd) and (v′

1, . . . , uj , . . . , v
′
d), have a common element uj .

Therefore, R1 is the (n × 1) vector with elements

exp

⎛
⎝− (uj − xij)2

γ̂j
−
∑

{�:� �=j}

(v�−xi�)2

γ̂�

⎞
⎠ , i = 1, . . . , n

and analogously for R2, replacing v� with v′
�. Then, using (5)

and (6), we obtain

E∗ {f(v1, . . . , uj , . . . , vd)} = μ̂ + RT
1 C−1(y − μ̂1n)

E∗ {f(v′
1, . . . , uj , . . . , v

′
d)} = μ̂ + RT

2 C−1(y − μ̂1n)

Cov∗ {f(v1, . . . , uj , . . . , vd), f (v′
1, . . . , uj , . . . , v

′
d)}

= σ̂2

⎧⎨
⎩exp

⎛
⎝− ∑

{�:� �=j}

(v� − v′
�)

2

γ̂�

⎞
⎠−RT

1 C−1R2

⎫⎬
⎭ . (13)

Finally, substituting (12) and (13) in (11), we obtain for each
j = 1, . . . , d

E∗
{

(E(Y |uj))
2
}

= σ̂2
(
e − T T

j (uj)C−1T j(uj)
)

+
(
μ̂ + T T

j (uj)C−1(y − μ̂1n)
)2

(14)

where T j(uj) is the (n × 1) vector with the elements given in
(9) of Section V, and

e=
∏

{�:� �=j}

⎧⎨
⎩

b�∫
a�

b�∫
a�

exp

(
− (v� − v′

�)
2

γ̂�

)
dv�dv′

�

(b� − a�)2

⎫⎬
⎭ . (15)

Note that the second term in (14) is (E∗{E(Y |uj)})2, and
therefore, the required variance has the simpler expression

Var∗ {E(Y |uj)} = σ̂2
(
e − T T

j (uj)C−1T j(uj)
)
.

APPENDIX II
SENSITIVITY INDICES

Here, we present the details for computing the estimates of
the first-order sensitivity indices Sj = Var(E(Y |uj))/Var(Y ),
which provide a measure of the portion of variability in the
response due to the main effect for each input. As discussed in
Section V, our estimates for the Sj , j = 1, . . . , d, are based on
E∗{Var(E(Y |uj))} and E∗{Var(Y )}. Regarding the estimate
for the unconditional variance, we can write

E∗ {Var(Y )} = E∗ {E(Y 2)
}
− E∗

{
(E(Y ))2

}
.

For the first term, we have

E∗ {E(Y 2)
}

= E∗

⎧⎨
⎩
∫
v

f2(v)
d∏

�=1

dH�(v�)

⎫⎬
⎭

=
∫
v

E∗ {f2(v)
} d∏

�=1

dH�(v�)

=
∫
v

(S + m2)
d∏

�=1

dH�(v�)

where m and S are the mean and variance, respectively,
of the predictive distribution for f(v) given in Section IV.
Substituting their expressions to the aforementioned equation,
we obtain

E∗ {E(Y 2)
}

= σ̂2

∫
v

(
1 − rT (v)C−1r(v)

) d∏
�=1

dH�(v�)

+
∫
v

{
μ̂2+2μ̂rT(v)C−1(y−μ̂1n)

+
(
rT(v)C−1(y−μ̂1n)

)2} d∏
�=1

dH�(v�)

= σ̂2 − σ̂2

⎛
⎝∫

v

rT (v)C−1r(v)
d∏

�=1

dH�(v�)

⎞
⎠

+ μ̂2 + 2μ̂T T C−1(y − μ̂1n)

+

⎛
⎝∫

v

(
rT (v)C−1(y−μ̂1n)

)2 d∏
�=1

dH�(v�)

⎞
⎠

where T is the n × 1 vector defined in Section V in the expres-
sion for E∗{E(Y )} after (7). Regarding the two integrals in the
equation, if we expand the quadratic form rT (v)C−1r(v) and
apply the integral, we obtain

∫
v

rT (v)C−1r(v)
d∏

�=1

dH�(v�) =
n∑

i=1

n∑
j=1

cijqij

where cij is the (i, j)th element of matrix C−1, and

qij =
d∏

�=1

⎧⎨
⎩

b�∫
a�

exp
(
− (v�−xi�)2+(v�−xj�)2

γ̂�

)
1

b�−a�
dv�

⎫⎬
⎭ ,

i, j = 1, . . . , n.

(The qij’s are symmetric in (i, j).) Analogously, expanding
the square (rT (v)C−1(y − μ̂1n))2 and taking the integral,
we get

∫
v

(
rT (v)C−1(y − μ̂1n)

)2 d∏
�=1

dH�(v�)

=
n∑

i=1

z2
i qii + 2

n∑
i=1

n∑
j=i+1

zizjqij
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where zi denotes the ith element of the n × 1 vector
C−1(y − μ̂1n).

For the second term, we can write

E∗
{

(E(Y ))2
}

= E∗

⎧⎨
⎩
⎛
⎝∫

v

f(v)
d∏

�=1

dH�(v�)

⎞
⎠

2⎫⎬
⎭

= E∗

⎧⎨
⎩
∫
v

∫
v′

f(v)f(v′)
d∏

�=1

dH�(v�)
d∏

�=1

dH� (v′
�)

⎫⎬
⎭

=
∫
v

∫
v′

E∗ {f(v)f(v′)}
d∏

�=1

dH�(v�)
d∏

�=1

dH� (v′
�)

and thus, E∗{(E(Y ))2} can be expressed as

∫
v

∫
v′

Cov∗ {f(v), f(v′)}
d∏

�=1

dH�(v�)
d∏

�=1

dH�(v′
�)

+
∫
v

∫
v′

{E∗(f(v)) E∗ (f(v′))}
d∏

�=1

dH�(v�)
d∏

�=1

dH� (v′
�) . (16)

Let r′(v′) denote the (n × 1) vector with ith element given by
exp(−

∑d
�=1(v

′
� − xi�)2/γ̂�). Then, analogously to the expres-

sions in (13), we have

E∗ {f(v)} = μ̂ + rT (v)C−1(y − μ̂1n)

E∗ {f(v′)} = μ̂ + r′T (v′)C−1(y − μ̂1n)

Cov∗ {f(v), f(v′)} = σ̂2

{
exp

(
−

d∑
�=1

(v� − v′
�)

2

γ̂�

)

− rT (v)C−1r′(v′)

}
. (17)

Therefore, substituting (17) in (16) and applying the integra-
tions, we finally obtain

E∗
{

(E(Y ))2
}

= σ̂2(e∗ − T T C−1T )

+
(
μ̂ + T T C−1(y − μ̂1n)

)2
where

e∗ =
d∏

�=1

⎧⎨
⎩

b�∫
a�

b�∫
a�

exp

(
− (v� − v′

�)
2

γ̂�

)
1

(b� − a�)2
dv�dv′

�

⎫⎬
⎭

and, again, T is the (n × 1) vector given after (7) in Section V.
Turning to the estimate for Var(E(Y |uj)), we have

E∗{Var(E(Y |uj))}=E∗
{

E
[
(E(Y |uj))

2
]}

−E∗
{

(E(Y ))2
}

and therefore, we only need the expression for
E∗{E[(E(Y |uj))2]}. In particular

E∗
{

E
[
(E(Y |uj))

2
]}

= E∗
{∫

(E(Y |uj))
2 dHj(uj)

}

=
∫

E∗
{

(E(Y |uj))
2
}

dHj(uj)

=
∫

σ̂2
(
e − T T

j (uj)C−1T j(uj)
)

+
(
μ̂ + T T

j (uj)C−1(y − μ̂1n)
)2

dHj(uj)

= σ̂2e − σ̂2

{∫
T T

j (uj)C−1T j(uj)dHj(uj)
}

+ μ̂2 + 2μ̂T T C−1(y − μ̂1n)

+
{∫ (

T T
j (uj)C−1(y − μ̂1n)

)2
dHj(uj)

}
.

The two integrals in the equation can be computed as follows.
First

∫
T T

j (uj)C−1T j(uj)dHj(uj) =
n∑

m=1

n∑
k=1

AmAkcmkIkm

where

Ikm =

bj∫
aj

exp
(
− (uj − xmj)2 + (uj − xkj)2

γ̂j

)
1

bj − aj
duj

and where, again,cmk is the (m,k)th element of matrixC−1, and

Am =
∏

{�:� �=j}

⎧⎨
⎩

b�∫
a�

exp
(
− (v� − xm�)2

γ̂�

)
1

b� − a�
dv�

⎫⎬
⎭ ,

m = 1, . . . , n.

Moreover

∫ (
T T

j (uj)C−1(y − μ̂1n)
)2

dHj(uj)

=
n∑

m=1

z2
m

⎧⎪⎨
⎪⎩A2

m

bj∫
aj

exp
(
−2(uj − xmj)2

γ̂j

)
1

bj − aj
duj

⎫⎪⎬
⎪⎭

+ 2
n∑

m=1

n∑
k=m+1

zmzkAmAkIkm

where Ikm is defined previously and zm denotes the mth
element of the vector C−1(y − μ̂1n).
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