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We develop a Bayesian method for nonparametric model–based quantile regression. The approach in-
volves flexible Dirichlet process mixture models for the joint distribution of the response and the co-
variates, with posterior inference for different quantile curves emerging from the conditional response
distribution given the covariates. An extension to allow for partially observed responses leads to a novel
Tobit quantile regression framework. We use simulated data sets and two data examples from the literature
to illustrate the capacity of the model to uncover nonlinearities in quantile regression curves, as well as
nonstandard features in the response distribution.
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1. INTRODUCTION

Quantile regression can be used for inference about the re-
lationship between quantiles of the response distribution and
available covariates. It offers a practically important alterna-
tive to traditional mean regression, because in general, a set of
quantiles provides a more complete description of the response
distribution than the mean. In many regression examples (in,
e.g., econometrics, educational studies, and environmental ap-
plications), we might expect a different structural relationship
for the higher (or lower) responses than the average responses.
In such applications, mean (or median) regression approaches
would likely overlook important features that could be uncov-
ered by a more general quantile regression analysis.

There is a fairly extensive literature on classical estimation
for the standard pth quantile regression model, yi = xT

i β + εi,
where yi denotes the response observations, xi denotes the cor-
responding covariate vectors, and εi denotes the errors, which
are typically assumed to be independent from a distribution
[with density, say, fp(·)] that has pth quantile equal to 0 (see,
e.g., Koenker 2005). This literature is dominated by semipara-
metric techniques, where the error density fp(·) is left unspeci-

fied [apart from the restriction
∫ 0
−∞ fp(ε)dε = p]. Thus, because

there is no probability model for the response distribution, point
estimation for β proceeds by optimization of some loss func-
tion. For instance, under the standard setting with independent
and uncensored responses, the point estimates for β minimize∑

ρp(yi − xT
i β), where ρp(u) = up − u1(−∞,0)(u); this form

yields the least absolute deviations criterion for p = 0.5, that is,
for the special case of median regression. Any inference beyond
point estimation is based on asymptotic arguments or resam-
pling methods. The classical literature includes also work that
relaxes the parametric (linear) regression form for the quantile
regression function (see, e.g., Horowitz and Lee 2005).

Compared with the existing volume of classical work, the
Bayesian literature on quantile regression is relatively limited.
The special case of median regression has been considered by

Walker and Mallick (1999), Kottas and Gelfand (2001), and
Hanson and Johnson (2002). This work is based on a paramet-
ric form for the median regression function and nonparametric
modeling for the error distribution, using either Pólya tree or
Dirichlet process (DP) priors (see, e.g., Müller and Quintana
2004 for a review of these nonparametric prior models). Re-
garding quantile regression, Yu and Moyeed (2001) and Tsionas
(2003) discussed parametric inference based on linear regres-
sion functions and the asymmetric Laplace distribution for the
errors, whereas Kottas and Krnjajić (2009) developed Bayesian
semiparametric models using DP mixtures for the error dis-
tribution. Moreover, Hjort and Petrone (2007) and Hjort and
Walker (2009) studied nonparametric inference for the quan-
tile function based on DP priors and quantile pyramid priors,
and briefly considered extension to semiparametric quantile re-
gression. Finally, Chamberlain and Imbens (2003) and Dunson
and Taylor (2005) proposed semi-Bayesian inference methods
for linear quantile regression, which, in contrast to the work
discussed earlier, do not involve probabilistic modeling for the
response distribution.

A practical limitation of the Bayesian semiparametric models
developed by Walker and Mallick (1999), Kottas and Gelfand
(2001), Hanson and Johnson (2002), and Kottas and Krnjajić
(2009) is that although they provide flexible shapes for the er-
ror distribution, they are based on linear quantile regression
functions. Regarding inference for nonlinear quantile regres-
sion functions, Scaccia and Green (2003) modeled the condi-
tional distribution of the response given a single continuous co-
variate with a discrete normal mixture with covariate-dependent
weights. Moreover, Yu (2002) discussed a semi-Bayesian esti-
mation method based on a piecewise polynomial representa-
tion for the quantile regression function again corresponding to
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a single continuous covariate, but without a probability model
for the error distribution. Finally, Kottas, Krnjajić, and Taddy
(2007) presented an approach that combines the nonparamet-
ric prior model for the errors from Kottas and Krnjajić (2009)
with a Gaussian process prior for the quantile regression func-
tion. We note that these approaches involve relatively complex
Markov chain Monte Carlo (MCMC) methods for inference,
and, most importantly, their extension to handle problems with
more than one covariate appears to be nontrivial.

To the best of our knowledge, this article presents the first at-
tempt at developing a model-based, fully inferential framework
for Bayesian nonparametric quantile regression. We argue for
the utility of Bayesian modeling, because it allows for exact and
full inference for the quantile regression function, as well as for
any functional of the response distribution that may be of inter-
est. But then the flexibility of such inference under nonparamet-
ric prior models becomes attractive. We propose an approach
to inference for nonparametric quantile regression founded on
probabilistic modeling for the underlying unknown (random)
distributions. In particular, we model the joint distribution of
the response and the covariates with a flexible nonparametric
mixture, then develop inference for different quantile curves
based on the induced conditional distribution of the response
given the covariates. The modeling framework can readily in-
corporate partially observed responses and in particular can be
used to provide flexible inference for Tobit quantile regression.
We present a method for MCMC posterior simulation, and il-
lustrate inferences with simulated data and two data sets from
the econometrics literature.

The article is organized as follows. In Sections 2 and 3 we
formulate the probability model and the approach to inference
for quantile regression (with technical details given in the Ap-
pendix). In Section 4 we provide applications of the modeling
approach to simulated data sets and data on moral hazards from
industrial chemical firms listed on the Tokyo stock exchange. In
Section 5 we develop a nonparametric modeling approach for
Tobit quantile regression, illustrating it with an example involv-
ing data on the labor supply of married women. We conclude
with a summary in Section 6.

2. BAYESIAN MIXTURE MODELING FOR FULLY
NONPARAMETRIC REGRESSION

In Section 2.1 we present the mixture modeling framework
that forms the basis of our proposed approach for nonparamet-
ric quantile regression. We provide specific model formulations
for categorical and/or continuous covariates in Section 2.2, and
provide details regarding the choice of priors in Section 2.3.

2.1 Modeling Framework

The starting point for most existing approaches to quan-
tile regression is the traditional additive regression framework,
y = h(x) + ε, where the errors ε are assumed to be indepen-
dent from a distribution with pth quantile equal to 0. Note that
under this framework (and regardless of the formulation for
the regression function), if inference is sought for more than
one quantile regression, then the particular model must be fit-
ted separately for each corresponding p. In particular, note that

estimated quantile regression functions for nearby values of p
might not satisfy the explicit ordering of the corresponding per-
centiles, especially with small sample sizes and/or for extreme
percentiles. This attribute of the additive formulation is shared
by any approach that uses a probability model for the error
distribution, regardless of the estimation method (likelihood or
Bayesian). This limitation of the standard additive quantile re-
gression framework provides the impetus for our methodology.
We develop an alternative approach to inference for quantile re-
gression that does not build on a structured regression model
formulation and that yields flexible, fully nonparametric infer-
ence for quantile regression. In particular, it enables simulta-
neous inference for any set of quantile curves, resulting in es-
timates that satisfy the explicit ordering of percentiles of the
response distribution.

The starting point for this approach is to consider a model for
the joint distribution of the response, y, and the vector of covari-
ates, x, which in general comprises both continuous covariates,
xc, and categorical covariates, xd , and thus x = (xc,xd). (We
use lower-case letters for random variables as well as for their
values; throughout the article, the distinction is clear from the
context.) Based on the joint model for z = (y,x), inference for
any set of quantile curves can be obtained from the posterior of
the implied conditional response distribution given the covari-
ates. Clearly, the richness of the resulting inference relies on
the flexibility of the prior probability model for the distribution
of z. We use a nonparametric mixture model,

f (z;G) =
∫

k(z; θ)dG(θ) (1)

for the density of z, with a parametric kernel density, k(z; θ),
and a random mixing distribution G that is modeled nonpara-
metrically. In this context, a flexible choice for the nonparamet-
ric prior for G is given by the DP, resulting in a DP mixture
model for f (z;G).

Recall that the DP was developed by Ferguson (1973) as a
prior probability model for random distributions (equivalently,
distribution functions) G. A DP(α,G0) prior for G is defined
in terms of two parameters, a parametric base distribution G0
(the mean of the process) and a positive scalar parameter α,
which can be interpreted as a precision parameter; larger val-
ues of α result in realizations G that are closer to G0. We write
G ∼ DP(α,G0) to indicate that a DP prior is used for the ran-
dom distribution G. In fact, DP-based modeling typically uses
mixtures of DPs (Antoniak 1974), that is, a more general ver-
sion of the DP prior that involves hyperpriors for α and/or the
parameters of G0. The most commonly used DP definition is
its constructive definition (Sethuraman 1994), which character-
izes DP realizations as countable mixtures of point masses (and
thus as random discrete distributions). Specifically, a random
distribution G generated from DP(α,G0) is (almost surely) of
the form

G(·) =
∞∑

�=1

ω�δϑ�
(·), (2)

where δϑ(·) denotes a point mass at ϑ . The locations of the
point masses, ϑ�, arise iid from G0; the weights, ω�, arise
from a stick-breaking mechanism based on iid draws {ζk : k =
1,2, . . .} from a Beta(1, α) distribution. In particular, ω1 = ζ1,
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and, for each � = 2,3, . . . , ω� = ζ�

∏�−1
k=1(1 − ζk). Moreover,

the sequences {ϑ�, � = 1,2, . . .} and {ζk : k = 1,2, . . .} are inde-
pendent.

The hierarchical model for the data, {zi = (yi,xi) : i =
1, . . . ,n}, corresponding to the DP mixture in (1), involves la-
tent mixing parameters, θ i, associated with each vector of re-
sponse/covariate observations, zi, and can be written as follows:

zi | θ i
ind∼ k(zi; θ i), i = 1, . . . ,n,

θ i | G
iid∼ G, i = 1, . . . ,n, (3)

G | α,ψ ∼ DP(α,G0(ψ)).

We place a gamma(aα,bα) prior (with mean aα/bα) on the DP
precision parameter α, and further hyperpriors on the parame-
ters, ψ , of the base distribution G0. The form of G0 and of the
priors for ψ depends on the choice of the mixture kernel k(·; θ),
as discussed in Section 2.2. Specification of the model hyper-
priors is addressed in Section 2.3.

2.2 Choice of the Mixture Kernel

When the covariate vector consists of continuous covariates
(as in the data example of Sec. 4.2), a natural choice for the
kernel of the DP mixture model in (1) is the (L + 1)-variate
normal distribution (perhaps after transformation for the values
of some of the components of z). In this case, L is the dimension
of xc ≡ x. Thus we model the joint density for z through a DP
mixture of multivariate normals,

f (z;G) =
∫

NL+1(y,xc;μ,�)dG(μ,�),

(4)
G | α,ψ ∼ DP(α,G0(ψ))

with G0 built from independent NL+1(m,V) and IWish(ν,S)

components for the mean vector μ and the covariance ma-
trix � of the normal mixture kernel. Here IWish(ν,S) de-
notes the inverse Wishart distribution for the (L + 1) × (L +
1) (positive definite) matrix � with density proportional to
|�|−(ν+L+2)/2 exp{−0.5 tr(S�−1)}. We work with fixed ν

and place hyperpriors on ψ = (m,V,S). In particular, we
use a NL+1(am,Bm) prior for m, an IWish(aV,BV) prior
for V, and a Wish(aS,BS) prior for the (L + 1) × (L +
1) positive definite matrix S, with density proportional to
|S|(aS−L−2)/2 exp{−0.5 tr(SB−1

S )} (provided that aS ≥ L + 1).
Model (4) has been applied in various settings following the

work of Müller, Erkanli, and West (1996); however, the scope of
inference typically has been limited to posterior point estimates,
obtained through posterior predictive densities, p(z0 | data) ≡
E(f (z0;G) | data), where z0 is a specified support point. Our
application to quantile regression requires the entire posterior
of f (z0;G) at any z0; thus we use a more general approach to
MCMC inference (discussed in Sec. 3) that includes sampling
from the posterior of G.

The DP mixture model in (4) can be extended to incorporate
both continuous and categorical covariates through replacement
of the multivariate normal distribution with a mixed continu-
ous/discrete specification for the mixture kernel k(y,xc,xd; θ).
One possible specification emerges from independent compo-
nents for (y,xc) and xd . The former can be a multivariate nor-
mal distribution, as in (4), whereas the latter would be assigned

an appropriate discrete distribution. For instance, with a single
binary covariate xd (as in the simulated data set of Sec. 4.1), the
DP mixture model is based on a mixed normal/Bernoulli kernel,

f (z;G) =
∫

NL+1(y,xc;μ,�)

× πxd (1 − π)1−xd dG(μ,�,π), (5)

G | α,ψ ∼ DP(α,G0(ψ)).

Here G0 comprises independent components for (μ,�) and π ,
the former as in model (4), with the corresponding hyperpriors
for (m,V,S), and the latter given by a beta(aπ ,bπ ) distribution
(with fixed shape parameters). This approach is easily extended
to general categorical xd by replacing the Bernoulli kernel with
a multinomial component and a Dirichlet base distribution for
the multinomial mean vector.

As a further example, consider again a single categorical co-
variate xd , involving in this case counts (as in the Tobit quantile
regression data example of Sec. 5.2). Then a possible form for
the DP mixture arises from a mixed normal/Poisson kernel,

f (z;G) =
∫

NL+1(y,xc;μ,�)Po(xd;λ)dG(μ,�, λ),

(6)
G | α,ψ ∼ DP(α,G0(ψ)),

where Po(·;λ) denotes the probability mass function of the
Poisson distribution with mean λ. (A similar model replacing
the Poisson component with a negative binomial could be con-
sidered as a robust alternative.) Again, G0 can be built from in-
dependent components for (μ,�) and λ, where now the latter
could be a gamma distribution with fixed shape parameter and
random scale parameter, which is assigned a gamma hyperprior.

In general, with a vector of categorical covariates, we would
need a multivariate discrete distribution for the kernel com-
ponent corresponding to xd . In its simplest form, this dis-
crete distribution would comprise independent components for
the individual elements of xd . More structured versions for
k(y,xc,xd; θ) can be built from a conditional distribution for ei-
ther the categorical or continuous part given the other variables.
Dropping the kernel parameters from the notation, in the former
case, k(y,xc,xd) = Pr(xd | y,xc)k(y,xc), where, for example,
with one binary covariate xd , a (linear) logistic form could be
used for Pr(xd = 1 | y,xc). The latter setting perhaps would be
more appropriate given the direction of conditioning involving
the response variable. In this case, we could have k(y,xc,xd) =
k(y,xc | xd)Pr(xd), and use a multivariate normal density for
k(y,xc | xd) with parameters that are functions of xd . A simpler
formulation would be k(y,xc,xd) = k(y | xc,xd)k(xc)Pr(xd),
using, say, a normal density for k(y | xc,xd) with a mean that
is a function of xc and xd .

We note that there is nothing ad hoc about our choices of
kernel or base distributions in these DP mixture models. Each
independent mixture kernel component is a member of a para-
metric family of densities that forms a standard Bayesian model
for the respective type of data. Efficient posterior simulation is
aided by the analytical convenience and intuition made possible
through these conditionally conjugate component choices. This
modeling approach allows for flexibility through nonparametric
mixing despite the choice of such convenient kernel densities
and the possible assumption of independence between kernel
components.
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2.3 Prior Specification

Here we discuss the choice of hyperpriors for the DP mix-
ture models of Section 2.2. We propose an approach that re-
quires a small amount of prior information, in particular only
rough prior guesses at the center of the response and co-
variate variables, say hy and hxl , l = 1, . . . ,L, as well as at
their corresponding ranges, say ry and rxl , l = 1, . . . ,L. Let
h = (hy,hx1, . . . ,hxL) and let H denote the (L + 1) × (L + 1)

diagonal matrix with diagonal elements (ry/4)2 and (rxl/4)2,
l = 1, . . . ,L, which are prior estimates for the variability of
the response and covariates. Then, for a default prior specifi-
cation for model (4), we consider a single component in the
mixture, NL+1(·;μ,�), that is, the limiting case of the model
with α → 0+. Thus we effectively seek to roughly center and
scale the mixture model, using prior information that identi-
fies the subset of RL+1 where the data are expected to be sup-
ported. Next, based on the form of G0 and the hyperpriors for
its parameters ψ , we can obtain marginal prior moments for μ,
that is, E(μ) = am, and Cov(μ) = (aV − L − 2)−1BV + Bm,
which are matched with h and H. Specifically, we take am = h,
and, using a variance inflation factor of 2, set Bm = H and
(aV − L − 2)−1BV = H. We use H to also specify the prior for
S through H = E(�) = (ν − L − 2)−1aSBS. Finally, we choose
ν, aV, and aS to appropriately scale the hyperpriors. Note, for
example, that smaller values of (ν −L−2)−1aS yield more dis-
persed priors for S, and that aV = L + 3 is the (integer) value
that yields the largest possible dispersion while ensuring finite
prior expectation for V. For the data analyses presented in Sec-
tion 4, we used ν = aV = aS = 2(L + 2); we also have empir-
ically observed that this choice works well for other data sets
that we have studied with model (4).

This general approach to default prior specification—placing
a hyperprior on the base distribution that would be an appro-
priate prior for the single-component model—is applicable to
other kernel forms as well. In the normal/Bernoulli mixture
model of (5), the expectation of π with respect to G0 will be
a prior guess for the marginal probability of xd = 1. In the case
of model (6), where xd consists of count data, the base distribu-
tion mean for λ is set to a prior guess of the mean for marginal
counts.

Regarding the prior choice for the DP precision α, guidelines
are available based on the role that this parameter plays with
regard to the number of distinct components in the DP mixture
model. Note that when marginalizing G over its DP prior, the
second and third stages of model (3) collapse into a joint prior
distribution for the mixing parameters  = {θ i : i = 1, . . . ,n},
which arises according to a particular Pólya urn scheme. Specif-
ically, as shown by Blackwell and MacQueen (1973), condi-
tional on the DP hyperparameters,

p( | α,ψ) = g0(θ1;ψ)

n∏
i=2

{
α

α + i − 1
g0(θ i;ψ)

+ 1

α + i − 1

i−1∑
�=1

δθ�
(θ i)

}
, (7)

where g0 is the density of G0. This expression indicates the
DP-induced clustering of the mixing parameters. In particular,

 is partitioned into n∗ (≤n) distinct components, where the
prior distribution for n∗ is controlled by α (see, e.g., Antoniak
1974; Escobar and West 1995). In practice, larger values of α

yield higher prior probabilities for larger n∗; for instance, for
moderately large n, E(n∗ | α) ≈ α log{(α +n)/α}, which can be
averaged over the gamma prior for α to obtain an approximation
to E(n∗).

3. POSTERIOR INFERENCE FOR
QUANTILE REGRESSION

Here we develop the general approach to estimating quan-
tile curves based on the posterior for the conditional response
density implied by the mixture modeling framework of Sec-
tion 2. The full posterior corresponding to the generic DP mix-
ture model in (3) comprises the mixing distribution G, the
vector of mixing parameters  = {θ i : i = 1, . . . ,n}, and the
DP hyperparameters α and ψ . Recall from Section 2.3 that
the DP induces a partition of  into n∗ distinct components,
say θ∗

j , j = 1, . . . ,n∗. The θ∗
j , along with configuration indica-

tors w = (w1, . . . ,wn), defined such that wi = j if and only if
θ i = θ∗

j , determine . Thus an equivalent representation for 

is given by (n∗, {θ∗
j : j = 1, . . . ,n∗},w).

Based on the work of Antoniak (1974), the full posterior can
be expressed as

p(G,,α,ψ | data) = p(G | ,α,ψ)p(,α,ψ | data). (8)

Here the distribution for G | ,α,ψ corresponds to a DP with
precision parameter α + n and mean G̃0(·;,α,ψ), which is a
mixed distribution with continuous mass α(α + n)−1 on G0(ψ)

and point masses nj(α + n)−1 at θ∗
j , j = 1, . . . ,n∗, where nj =

|{i : wi = j}| is the size of the jth distinct component. Moreover,

p(,α,ψ | data) ∝ p(α)p(ψ)p( | α,ψ)

n∏
i=1

k(zi; θ i)

is the posterior of the finite-dimensional parameter vector that
results by marginalizing G over its DP prior; in particular, p( |
α,ψ) is given by (7), and p(α) and p(ψ) are the (independent)
hyperpriors for α and ψ .

Thus sampling from (8) involves MCMC posterior simula-
tion from p(,α,ψ | data), followed by direct sampling from
p(G | ,α,ψ). A general outline of the MCMC algorithm to
sample from p(,α,ψ | data) is as follows:

(a) Update each θ i, i = 1, . . . ,n, by drawing from its poste-
rior full conditional,

p(θ i | {θ� :� �= i}, α,ψ,data)

∝ p(θ i | {θ� :� �= i}, α,ψ)k(zi; θ i),

where the prior full conditional, p(θ i | {θ� :� �= i}, α,ψ),
corresponding to the joint prior in (7), is a mixed distrib-
ution with point masses (α + n − 1)−1 at the θ�, for � �= i
and continuous mass α(α + n − 1)−1 on G0(ψ). Note
that updating all of the θ i provides implicitly posterior
samples for n∗, for the θ∗

j , j = 1, . . . ,n∗, and for w.
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(b) To improve mixing of the MCMC algorithm (Bush and
MacEachern 1996), resample each θ∗

j , j = 1, . . . ,n∗,
from its posterior full conditional

p(θ∗
j | n∗,w,ψ,data) ∝ g0(θ

∗
j ;ψ)

∏
{i:wi=j}

k(zi; θ∗
j ).

(c) Update hyperparameters ψ based on their posterior full
conditional

p(ψ | n∗, {θ∗
j : j = 1, . . . ,n∗}) ∝ p(ψ)

n∗∏
j=1

g0(θ
∗
j ;ψ).

(d) Update α using, for instance, the auxiliary variable
method from Escobar and West (1995).

In all but (d), the details of the MCMC algorithm depend on the
choice of DP mixture kernel and the form of G0. The Appendix
provides further details for the specific DP mixture models in
(4)–(6) used for the data examples of Sections 4 and 5.2. Sam-
pling from the conditional posterior p(G | ,α,ψ) = DP(α +
n, G̃0) is more generic, and we can present an approach that
does not depend upon specifics of the DP mixture model choice.

Given each posterior sample {b, αb,ψb : b = 1, . . . ,B}
from p(,α,ψ | data), it is possible to sample a posterior
realization Gb from p(G | ,α,ψ) using the DP construc-
tive definition in (2) with a truncation approximation (e.g.,
Kottas 2006). Each Gb is a discrete distribution with point
masses {θ̃ rb : r = 1, . . . ,Rb}, drawn iid from G̃0(·;b, αb,ψb)

as defined following equation (8), and corresponding weights
{ωrb : r = 1, . . . ,Rb}, generated using the stick-breaking con-
struction based on iid Beta(1, αb + n) draws, and normalized
so that

∑Rb
r=1 ωrb = 1. Here Rb is the number of terms used

in the truncation series approximation to the countable series
representation for the DP. In general, Rb may depend on the
particular posterior realization, although in practice it suffices
to consider a common value, R. Regardless, the approximation
can be specified up to any desired accuracy; for instance, it can
be shown that E(

∑Rb−1
r=1 ωrb | αb) = 1 − {(αb + n)/(αb + n +

1)}Rb−1, and thus an approach to choosing a common truncation
level R would be to make {(n+maxb αb)/(n+1+maxb αb)}R−1

small to any desired accuracy.
For any specific combination of response and covariate val-

ues, say, z0 = (y0,x0),

f (y0,x0;Gb) =
∫

k(y0,x0; θ)dGb(θ) =
R∑

r=1

ωrbk(y0,x0; θ̃ rb)

is a realization from the posterior of the random mixture den-
sity f (z;G) in (1) at point z = (y0,x0). Analogously, we can ob-
tain the draw from the posterior of the marginal density f (x;G)

at point x = x0 by computing f (x0;Gb) = ∫
kx(x0; θ)dGb(θ),

where kx(·; θ) denotes the marginal density for x correspond-
ing to the joint kernel density k(y,x; θ). For instance, un-
der model (4), f (x0;Gb) = ∫

NL(x0;μx,�x)dGb(μ,�), where
(μx,�x) are the parameters of the marginal for x induced by
the joint NL+1(y,x;μ,�) distribution.

Thus we obtain f (y0 | x0;Gb) = f (y0,x0;Gb)/f (x0;Gb),
which is a realization from the posterior of the conditional
density f (y | x;G), at point (y,x) = (y0,x0). Repeating over

a grid in y that covers the range of response values of inter-
est, we obtain a posterior realization from the random con-
ditional density function f (· | x0;G) for the specific covari-
ate values x0. For any 0 < p < 1, the conditional quantile
qp(x0) ≡ qp(x0;G) satisfies

∫ qp(x0) f (y | x0;G)dy = F(qp(x0) |
x0;G) = p. Numerical integration of the posterior realizations
from the conditional response density, f (· | x0;G), yields draws
from the posterior of qp(x0) for any set of percentiles that
might be of interest. Alternatively, certain kernel choices al-
low for direct calculation of the conditional response distri-
bution function, F(· | x0;G), precluding the need for numer-
ical integration. Consider, for example, model (4) with the
partition of kernel parameters, θ̃ rb = (μ̃rb, �̃rb), into com-
ponents for y and x. Specifically, μ̃rb comprises L × 1 vec-
tor μ̃x

rb and scalar μ̃
y
rb, and �̃rb is a square block matrix

with diagonal elements given by L × L covariance matrix
�̃

x
rb and scalar variance �̃

y
rb, and above and below diagonal

vectors �̃
xy
rb and �̃

yx
rb . Then a posterior realization for F(y0 |

x0;Gb) is calculated as [∑R
r=1 ωrbNL(x0; μ̃x

rb, �̃
x
rb)�((y0 −

m(x0))/s(x0))]/f (x0;Gb), where �(·) is the standard normal
distribution function, m(x0) = μ̃

y
rb + �̃

yx
rb(�̃

x
rb)

−1(x0 − μ̃x
rb),

and s2(x0) = �̃
y
rb − �̃

yx
rb(�̃

x
rb)

−1�̃
xy
rb .

Because of the need to obtain the posterior of f (· | x0;G)

[or F(· | x0;G)] over a sufficiently dense grid of x0 values,
implementation of inference becomes computationally inten-
sive for high-dimensional covariate spaces. However, it is only
ever possible to plot estimates for quantile regression functions
given one- or two-variable subsets of the covariate vector (see,
e.g., Figures 2 and 3 in Section 4.2). In these cases, the in-
put grid is over a lower-dimensional space, and the computa-
tional expense is reduced. Note that inference for a marginal
p(qp(x0i) | data), where x0i ∈ x0, is exactly the same as infer-
ence for the full conditional quantile except based on marginal
kernel densities; for example, in the normal mixture model, the
joint density kernel would be N(·;μxiy,�xiy). Moreover, if in-
terest were focused on the posterior of conditional response
densities f (y | x0;G) (see, e.g., Figure 4), or on correspond-
ing conditional quantiles, for a small number of specified x0
values, then this approach would be feasible in higher dimen-
sions.

We can thus obtain samples from p(qp(x0) | data) for any
x0 and for any 0 < p < 1. For any set of p values, working
with a grid over the covariate space, we can compute simultane-
ous point and interval estimates for the corresponding quantile
curves qp(·;G). Moreover, because inference for all quantiles
is based on a single density function, these estimates neces-
sarily satisfy the ordering of percentiles of the response dis-
tribution. Thus, while providing a very flexible framework for
quantile regression inference, our model-based nonparametric
approach also avoids any issues with crossing quantiles. Es-
timated crossing quantiles may arise under classical nonpara-
metric methods for quantile regression, and the related liter-
ature includes various techniques for addressing this problem
(see, e.g., Dette and Volgushev 2008 and references therein).
Moreover, the model does not rely on the additive nonpara-
metric regression formulation and thus can uncover interactions
between covariates that might influence certain quantile regres-
sion curves.
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4. DATA ILLUSTRATIONS

Section 4.1 presents results from a small simulation experi-
ment, whereas Section 4.2 considers an example involving data
on moral hazard from Japanese industrial chemical firms.

4.1 Simulation Experiment

We consider synthetic data to study empirically some key as-
pects of the performance of the modeling approach developed
in Sections 2 and 3. Although an extensive simulation study is
beyond the scope of this article, these examples serve to indi-
cate the effect of the sample size and prior choice on the result-
ing posterior inference under a setting in which the true regres-
sion function and response distribution are known.

Two data sets, of size n = 200 and n = 2,000, consist of real-
izations of a continuous response y, a binary covariate xd , and a
continuous covariate xc. The data were generated such that

xc ∼ N(0,1), xd | xc ∼ Bernoulli(�(xc)),

y | xc, xd ∼ N(h(xc), σ
2(xd)),

where N(μ,σ 2) is the normal distribution with mean μ and
variance σ 2; σ(0) = 0.25, σ(1) = 0.5; and h(xc) = 0.3 +
0.4xc + 0.5 sin(2.7xc) + 1.1(1 + x2

c)
−1. The marginal condi-

tional distribution for y given xc is defined by heteroscedastic
normal errors around a mean/median function (taken from Neal
1997) that is nonlinear within the likely range for xc. Note that
the data are generated through an additive error mechanism, as
assumed by the majority of quantile regression models, even
though this is not the setting under which our model was devel-
oped.

The model specification follows the outline of Section 2.
In particular, the mixed normal/Bernoulli kernel of model (5)
is assumed. The base distribution is the product of normal
and inverse Wishart components for the kernel parameters re-
lated to (y, xc), and a uniform component for π , such that
G0(μ,�,π;m,V,S) = N2(μ;m,V) IWish(�;ν,S)beta(π;
1,1). To study prior sensitivity, we considered two dramatically
different prior specifications. Both have the same mean for m
at (0,1.5), corresponding to the approximate mean for (xc, y),
and in both cases the required priors for variance matrixes are
specified in terms of a single matrix H and the appropriate num-
ber of degrees of freedom, following the procedure described in
Section 2.3. In the first specification, referred to as the default
prior, H is set to I, the identity matrix, such that (with variance
of about 1 for xc and y) the prior variance matrixes are the ap-
proximate expectation of the data-dependent hyperparameters
proposed in Section 2.3. Moreover, under the default specifi-
cation, π(α) = gamma(2,0.2). The second (alternative) prior
specification is based on H = 10I and π(α) = gamma(2,2).
Thus the alternative specification inflates the prior expectation
for variance matrixes by a factor of 10 and deflates the prior
expectation for α by a factor of 10 (thus, e.g., under n = 200,
decreasing the approximate prior expectation for n∗ from about
28 to 5). These two priors represent very different (but still
plausible) representations of uncertainty about the DP mixture
prior parameters.

All of the results are based on MCMC samples of 80,000
draws, recorded on every tenth iteration, following a burn-in

period of 20,000 iterations. Inference for the median and 90th
percentile regression functions is shown in the two left columns
of Figure 1, and the results are encouraging. There is a striking
similarity between posterior mean and interval estimates cor-
responding to the two very different prior specifications. Com-
pared with inference under the small sample, posterior means
informed by the larger sample are closer to the truth and the
90% intervals are tighter, such that an increase in information
leads to a corresponding increase in posterior precision. Be-
cause inference for extreme quantile functions is notoriously
challenging, it is notable that accurate estimation and quantifi-
cation of uncertainty holds in the case of the 90th percentile as
well as for the median.

Figure 1 (far right column) also plots posterior estimates for
the conditional response density f (y|xc = 0, xd = 1;G). Again,
there is a desirable uniformity among results corresponding to
the different prior choices. Moreover, as the sample size in-
creases to 2,000, the posterior mean estimates approach the true
conditional density function. For the 200-point sample, infer-
ence relies heavily on a small number of local observations (i.e.,
response observations associated with xc around 0) and shows
posterior mean density functions that are shifted to the right of
the true density. The wide posterior 90% interval reflects this
uncertainty, although the default prior analysis appears to pro-
vide a better quantification of uncertainty than that based on
the alternative prior. Results for the larger sample show a sub-
stantial improvement with the posterior distribution effectively
capturing the truth under both prior choices. This is achieved
despite the still limited amount of information provided about
the entire response density corresponding to any specific condi-
tioning.

4.2 Moral Hazard Data

Here we illustrate the methodology with real data used by
Yafeh and Yoshua (2003) to investigate the relationship be-
tween shareholder concentration and several indexes for man-
agerial moral hazard in the form of expenditure with scope for
private benefit. The data set includes a variety of variables de-
scribing 185 Japanese industrial chemical firms listed on the
Tokyo stock exchange. (The data set is available online through
the Economic Journal at http://www.res.org.uk.) A subset of
these data was also considered by Horowitz and Lee (2005)
in application of their classical nonparametric estimation tech-
nique for an additive quantile regression model. As those au-
thors did, we consider a single model proposed by Yafeh and
Yoshua (2003) in which index MH5, consisting of general sales
and administrative expenses deflated by sales, is the response y
related to a four-dimensional covariate vector x, which includes
Leverage (ratio of debt to total assets), log(Assets), the Age of
the firm, and TOPTEN, the percentage of ownership held by
the 10 largest shareholders. The response and all 4 covariates
are continuous and, although Leverage and TOPTEN occur over
subsets of the real line, the data lies far enough from support
boundaries to render the DP mixture of multivariate normals
in (4) a suitable choice for the analysis.

The model is implemented using the prior specification ap-
proach outlined in Section 2.3. In the absence of genuine prior

http://www.res.org.uk
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Figure 1. Simulated data. Each row shows posterior estimates for (from left to right) the marginal conditional median and 90th percentile
for y given xc (xc ≡ x in the plot labels), and the conditional density f (y | xc = 0, xd = 1;G). The solid lines are truth, dashed lines are posterior
mean estimates, and dotted lines contain a 90% interval. The rows correspond to the sample with n = 200 with the default prior (top) and with the
alternative prior (second from top), and to the sample with n = 2,000 under the default prior (third from top) and the alternative prior (bottom).

information in our illustrative analysis, we take values from
the data for the prior guesses of the center and range for
the response and four covariates. The results were insensitive
to reasonable changes in the prior specification; for example,
doubling the observed data range for the response and co-
variates did not affect the posterior estimates in Figures 2–4.
A gamma(1,0.2) prior is placed on the DP precision parame-
ter α, implying E(n∗) ≈ 16. Experimentation with alternative
gamma priors, yielding smaller prior estimates for the number
of distinct mixture components, has resulted in essentially iden-
tical posterior inference. Results are based on an MCMC sam-

ple of 150,000 parameter draws, recorded on every tenth itera-
tion, following a (conservative) burn-in of 50,000 iterations.

Although it is not possible to show the response quantile
functions over all four variables, as discussed in Section 3, it is
straightforward to obtain quantile curves for the response given
any one-dimensional or two-dimensional subset of the covari-
ates. Figure 2, plots posterior point and 90% interval estimates
for the response median and 90th percentile as a function of
each individual covariate. In addition, Figure 3 provides in-
ference for the response median and 90th percentile surfaces
over the two-dimensional covariate space defined by Leverage
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Figure 2. Moral hazard data. Posterior estimates for median regres-
sion (left column) and 90th percentile regression (right column) for
MH5 conditional on each individual covariate. The solid lines are pos-
terior mean estimates, and dashed lines contain a 90% posterior inter-
val. Data scatterplots are shown in gray.

and TOPTEN. [Note that Yafeh and Yoshua (2003) found these
two covariates to be the most significant.] In particular, shown
are point estimates, through the posterior mean, and a measure
of the related uncertainty, through the posterior interquartile
range.

These two figures indicate the capacity of the model to cap-
ture nonlinear shapes in the estimated quantile curves as well
as to quantify the associated uncertainty. Figure 2 shows that
the marginal relationship between each covariate and MH5
may differ significantly depending on the quantile of inter-
est; this is particularly clear in the contrast between median
and 90th percentile curves for MH5 conditional on TOPTEN.
The inference results displayed in Figure 3 show an interac-
tion between the effects of Leverage and TOPTEN in both
the median and 90th percentile surfaces, suggesting that it is
useful to relax the assumption of additivity over the covari-
ate space (which forms the basis of the method in Horowitz
and Lee 2005). Moreover, Figure 3 indicates that posterior

uncertainty about the quantile functions is highly variable
throughout the covariate space; for each quantile, regions of
steep change in the quantile function correspond to signifi-
cantly higher uncertainty around the function estimate. Fig-
ure 4 illustrates inference for the conditional response density
f (y | x0;G). Included are results for four values, x0, of the
covariate vector x = (TOPTEN,Leverage,Age, log(Assets)),
specifically, clockwise from top left, x0 = (40,0.3,55,11),
(35,0.6,55,11), (40,0.3,70,13), and (70,0.8,55,11). This
type of inference highlights the ability of the model to capture
nonstandard distributional features such as heavy tails, skew-
ness, and multimodality. The posterior estimates in Figure 4
clearly indicate that the response distribution changes signifi-
cantly throughout the covariate space in ways that cannot be
modeled with standard parametric forms. Inspection of the data
scatterplots in Figure 2 makes it clear that the nonstandard fea-
tures captured in the posterior estimates from the DP mixture
model are driven by the data and are not simply an artifact of the
flexible nonparametric prior mixture model. In this regard, note
also that for the simulated data of Section 4.1, arising from a
normal response distribution, the DP mixture model yields uni-
modal, roughly symmetric estimates for conditional response
densities (refer again to Figure 1 for results under a specific
combination of covariate values).

Finally, given the results of this section, it is worth drawing
some comparisons between the proposed modeling approach
with existing methods for quantile regression discussed in Sec-
tion 1. First, given the nonlinearities in regression relation-
ships (Figure 2) and nonstandard response density shapes (Fig-
ure 4), it is evident that the standard linear quantile regression
model would be outperformed by the DP mixture model. To a
greater or lesser extent, this would be the case regardless of
the estimation approach—classical semiparametric, Bayesian
parametric (e.g., Yu and Moyeed 2001), or Bayesian semi-
parametric (e.g., Hjort and Petrone 2007; Kottas and Krnja-
jić 2009). Classical nonparametric estimation methods likely
would fare better with regard to capturing nonlinear quantile
regression relationships; however, such estimation techniques
are limited with respect to inference for the response distrib-
ution; for example, the results reported in Figure 4 would not
be possible under these approaches. Although comparison with
Bayesian nonparametric methods for nonlinear quantile regres-
sion is more relevant, there has been very little work in this
direction. Moreover, as discussed in Section 1, extensions of
existing work (e.g., Scaccia and Green 2003; Kottas, Krnjajić,
and Taddy 2007) to incorporate more than one covariate is chal-
lenging.

5. NONPARAMETRIC TOBIT
QUANTILE REGRESSION

In Section 5.1 we develop the extension to nonparametric To-
bit quantile regression, and in Section 5.2 we give a data exam-
ple that illustrates this extension.

5.1 The Modeling Approach

There are several regression applications that involve con-
strained observations for the response variable, and possibly
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Figure 3. Moral hazard data. Posterior estimates of median surfaces (left column) and 90th percentile surfaces (right column) for MH5
conditional on Leverage and TOPTEN. The posterior mean is shown on the top row; the posterior interquartile range, on the bottom.

also for the covariates. For instance, different types of censoring
or truncation are commonly present in survival analysis data. In
econometrics applications, a standard scenario involves certain
forms of partially observed responses, leading to what is typi-
cally referred to as Tobit regression models, after the work by
Tobin (1958) (See, e.g., Amemiya 1984 for a thorough review
of various types of Tobit models.)

The standard Tobit model is formulated through latent ran-
dom variables y∗

i , which are assumed to be independent and
normally distributed with mean xT

i β and variance σ 2. Tobit
quantile regression arises by modeling a specific quantile of the

latent response distribution as a function of the covariates. The
covariate vectors xi are observed for all subjects in the data;
however, the observed responses, yi, are constrained according
to yi = max{y0

i , y∗
i }, where the y0

i are fixed threshold points. In
applications, the threshold value is typically the same for all
data subjects, and thus we can set, without loss of generality,
y0

i = 0 (as in our data example of Sec. 5.2). Formally, this data
structure corresponds to (fixed) left censoring; however, there
is a subtle difference with more traditional survival analysis ap-
plications, because in economics settings the latent variable y∗
may exist only conceptually, for example, as a particular util-

Figure 4. Moral hazard data. Posterior mean estimates (solid lines) and 90% interval estimates (dashed lines) for four conditional densities
f (y | x0;G) (see Sec. 4 for the values of x0).
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ity functional formulated based on empirical and/or theoretical
studies.

The classical semiparametric literature includes several esti-
mation techniques for both mean and quantile regression To-
bit models (see, e.g., Buchinsky and Hahn 1998 and references
therein). Again, these approaches do not include probabilistic
modeling for the latent response distribution and thus are lim-
ited in terms of the range of inferences that they can provide.
Bayesian approaches to Tobit regression for econometrics ap-
plications appear to have focused on parametric modeling with
linear regression functions. For instance, the early work of Chib
(1992) developed Bayesian inference for linear Tobit regression
with normal errors whereas, and, more recently, Yu and Stander
(2007) have studied linear Tobit quantile regression with asym-
metric Laplace errors.

The modeling framework developed in Sections 2 and 3 can
be used to provide a flexible nonparametric approach to infer-
ence for Tobit quantile regression. Again, we start with a DP
mixture model, f (y∗,x;G) = ∫

k(y∗,x; θ)dG(θ), G | α,ψ ∼
DP(α,G0(ψ)), for the joint distribution of the latent response
variable y∗ and the vector of covariates x. The mixture kernel
can be specified following the approach outlined in Section 2.2.
The first stage of the hierarchical model for the data, (yi,xi),
i = 1, . . . ,n, is built again from conditional independence given
the mixing parameters θ i, i = 1, . . . ,n, but is modified with re-
spect to (3) by replacing the (conditional) response kernel den-
sity with its corresponding distribution function for all i’s with
yi = 0.

The analogous modifications to the MCMC method of Sec-
tion 3 yield the full posterior for G, α, ψ and the θ i, i =
1, . . . ,n. (Specific details for the DP mixture model used in
Sec. 5.2 are provided in Section A.3.) In particular, full and ex-
act inference for any set of quantile regression curves emerges
from the posterior realizations for the conditional response den-
sity f (· | x0;G) over grid values x0 in the covariate space.
Note that here, for any specified point y0 > 0 associated with
fully observed responses, f (y0 | x0;G) in the notation of Sec-
tion 3 is given through f (y0 | y∗ = y0 > 0,x0;G). Thus infer-
ence for Tobit quantile regression is based on the conditional
response density, given x, arising from the underlying DP mix-
ture f (y∗,x;G), conditionally also on y∗ > 0. Moreover, using
the posterior realizations for f (y∗ | x;G), we can obtain the pos-
terior for Pr(y∗ ≤ 0 | x0;G). A collection of these posteriors for
a set of specified x0 provides information on the relationship
between the covariates and the censoring mechanism for the re-
sponse. Because of the flexibility of the mixture model for the
joint distribution of y∗ and x, the proposed modeling approach
enables potentially different structures for the relationship be-
tween the response and the covariates across different quantile
regression curves, as well as for the relationship between the
covariates and the underlying mechanism that constrains the re-
sponse. This is a practically important advantage over paramet-
ric formulations (as in, e.g., Yu and Stander 2007) that postulate
a linear regression form for all of the aforementioned relation-
ships.

5.2 Data Example

Here we consider a subset of the data on female labor supply
corresponding to the University of Michigan Panel Study of In-
come Dynamics for year 1975. Using this data set, Mroz (1987)

presented a systematic analysis of theoretical and statistical as-
sumptions used in empirical models of the female labor supply.
The sample considered by Mroz (1987) comprises 753 married
white women age 30–60, 428 of whom worked at some time
during 1975. The 428 fully observed responses, yi, are given
by the wife’s work (in 100 hours) during 1975. For the remain-
ing 325 women, the observed work of yi = 0 corresponds to
negative values for the latent labor supply response, y∗. The re-
sponse variable can be treated as continuous (nonzero observed
responses ranging from 12 to 4,950 hours). The data set in-
cludes covariate information on family income, wife’s wage,
education, age, number of children of different age groups, and
mother’s and father’s educational attainment, as well as on hus-
band’s age, education, wage, and hours of work. For our illus-
trative analysis, we consider number of children as the single
categorical covariate, xd ≡ x. This covariate combines observa-
tions from two variables in the data set, “number of children
less than 6 years old in household” and “number of children be-
tween ages 6 and 18 in household”; the observed values range
from 0 to 8 children.

To model the joint distribution of the covariate and the latent
labor supply response, we work with the special case of DP
mixture (6) given by

f (y∗, x;G) =
∫

N(y∗;μ,σ 2)Po(x;λ)dG(μ,σ 2, λ),

(9)
G | α,ψ ∼ DP(α,G0(ψ)).

Here G0 is built from independent components, specifically
N(ψ1,ψ2) for μ, gamma(c,ψ3) for σ−2, and gamma(d,ψ4)

for λ, with hyperpriors placed on ψ = (ψ1,ψ2,ψ3,ψ4).
Posterior inference under model (9) is implemented using the

MCMC method detailed in Section A.3. The results reported
here are based on a gamma(1,0.2) prior for α, and N(10,40),
gamma(2,40), gamma(2,0.2), and gamma(3,3) priors for ψ1,
ψ−1

2 , ψ3, and ψ4. The remaining parameters of G0 are set to
c = 2 and d = 1. We have experimented with increasing and
decreasing the variability around α and ψ1 and the prior ex-
pectations for ψ2 and ψ3, as well as with alternative specifi-
cations for ψ4, and have not found this to affect the analysis.
Results are based on an MCMC sample of 100,000 parameter
draws, recorded on every fifth iteration, following a (conserva-
tive) burn-in period of 50,000 iterations.

The posterior samples for G can be used to obtain the pos-
terior of the conditional distribution for the latent labor sup-
ply response given a specific value for the covariate number
of children. Posterior estimates for the conditional densities
f (y∗ | x;G), corresponding to x = 0, . . . ,5 children, are shown
in Figure 5. The estimated latent response densities have non-
standard shapes that change with the covariate value in a fash-
ion that is difficult to describe with a parametric regression re-
lationship. The peak at around 2,000 hours of work, which is
seen in conditional response densities for lower numbers of
children, corresponds to a traditional full-time job (50 weeks
of 40 hours). The nonparametric DP mixture model exposes
a density structure that would have been missed under stan-
dard parametric assumptions for the latent response distribu-
tion, such as the models developed by Chib (1992) and Yu and
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Figure 5. Female labor supply data. Posterior estimates for f (y∗ | x;G) given x = 0, . . . ,5 children. The solid lines correspond to posterior
mean estimates; the dashed lines, to 90% posterior interval estimates.

Stander (2007) based on normal and asymmetric Laplace distri-
butions. In particular, the density mode corresponding to full-
time labor decreases in magnitude as the number of children
increases and the probability mass is redistributed in the region
with y∗ < 2,000 hours of work. From an economic perspective,
this suggests that the main effect of an increase in offspring on
labor supply is to reduce the proportion of women working full
time.

Inference about conditional quantiles qp(x) for positive
observed work proceeds based on posterior realizations for
Pr(y∗ < u | y∗ > 0, x;G) = Pr(0 < y∗ < u, x;G)/Pr(y∗ >

0, x;G), that is, the conditional distribution function at u >

0, given positive observed work and given x. In particu-
lar, for any specified p and any value x for the number
of children, the posterior samples {qpb(x) : b = 1, . . . ,B =
10,000} are obtained (with interpolation) from p = Pr(y∗ <

qpb(x) | y∗ > 0, x;Gb) = [∑R
r=1 ωrb Po(x; λ̃rb)(�((qpb(x) −

μ̃rb)/σ̃rb) − �(−μ̃rb/σ̃rb))]/[∑R
r=1 ωrb Po(x; λ̃rb)(1 −

�(−μ̃rb/σ̃rb))], where, following the notation of Section 3,
Gb = {ωrb, (μ̃rb, σ̃

2
rb, λ̃rb) : r = 1, . . . ,R} is the bth posterior

realization for G. As an illustration, Figure 6 shows boxplots
of the posterior samples for q0.5(x) and q0.9(x). (Boxplots are
constructed such that the boxes contain the interquartile sample
range and the whiskers extend to the most extreme sample point
that is no more than 1.5 times the interquartile range outside
the central box.) Noteworthy is the different rates of decrease
in the median and 90th percentile regression relationships be-
tween positive observed work and number of children. Also
note that the posteriors for q0.9(x) at x = 1,2,3,4 children are

more concentrated than the posterior for q0.9(0), whereas such
a difference is substantially less pronounced in the posteriors
for q0.5(x).

Finally, as discussed in Section 5.1, also of interest might be
inference for Pr(y∗ ≤ 0 | x;G), that is, the probability of 0 hours
of observed work given the number of children. For any value
of x = 0, . . . ,8, posterior samples for this probability arise
from Pr(y∗ ≤ 0 | x;Gb) = [∑R

r=1 ωrb Po(x; λ̃rb)�(−μ̃rb/σ̃rb)]/∑R
r=1 ωrb Po(x; λ̃rb), for b = 1, . . . ,B. Figure 7 shows boxplots

Figure 6. Female labor supply data. Posterior samples of positive
observed work median (left) and 90th percentile (right) given the real-
ized values of the covariate. The positive data observations are shown
in gray.
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Figure 7. Female labor supply data. Posterior samples for
Pr(y∗ ≤ 0 | x;G).

of these posterior samples, indicating fairly similar relation-
ships between the covariate and the censoring mechanism for
the response when x = 0,1 children; a noticeable increase in
the probability of 0 hours of observed work with x = 2,3,4
children; and similar probabilities, albeit with increased poste-
rior uncertainty, for x = 5,6,7,8 children.

6. SUMMARY

We have developed a fully inferential Bayesian approach
for quantile regression. The modeling approach uses flexi-
ble Dirichlet process mixtures for the joint distribution of the
response and covariates, with inference for quantile curves
emerging from the posterior of the induced conditional distri-
bution of the response given the covariates. We have discussed
MCMC posterior simulation methods for such inference. Our
modeling framework allows incorporation of both categorical
and continuous covariates, as well as partially observed re-
sponses. In particular, we have presented an approach to fully
nonparametric Tobit quantile regression. Finally, we have pro-
vided illustrations with simulated and real data examples.

APPENDIX: MCMC POSTERIOR
SIMULATION DETAILS

A.1 DP Mixture of Multivariate Normals Model

Here we provide details of the MCMC algorithm, out-
lined in Section 3, to sample from p(,α,ψ | data) under
DP mixture model (4). Regarding step (a), we update each
θ i = (μi,�i) using algorithm 5 from Neal (2000), which is
based on Metropolis–Hastings steps with proposal distribu-
tion given by the prior full conditional of (μi,�i), p((μi,�i) |
{(μ�,��) :� �= i}, α,ψ), implied by (7). Updating all of the
(μi,�i), i = 1, . . . ,n, generates a posterior realization for
the partition of  comprising n∗ distinct components θ∗

j =
(μ∗

j ,�
∗
j ), j = 1, . . . ,n∗. The Metropolis–Hastings approach

to updating the (μi,�i) potentially can lead to poor mixing;
however, it is straightforward to implement and, combined
with step (b), which resamples the (μ∗

j ,�
∗
j ), yields an effi-

cient MCMC method. For each j = 1, . . . ,n∗, the posterior full
conditional for (μ∗

j ,�
∗
j ) is proportional to g0(μ

∗
j ,�

∗
j ;ψ) ×∏

{i : wi=j} NL+1(zi;μ∗
j ,�

∗
j ), and is sampled by drawing from

the full conditionals for μ∗
j and �∗

j . The former is (L + 1)-

variate normal with mean vector (V−1 + nj�
∗−1
j )−1(V−1m +

nj�
∗−1
j z̃j) and covariance matrix (V−1 + nj�

∗−1
j )−1, where

nj = |{i : wi = j}| and z̃j = n−1
j

∑
{i : wi=j} zi. The latter is in-

verse Wishart with scalar parameter ν+nj and matrix parameter
S + ∑

{i : wi=j}(zi − μ∗
j )(zi − μ∗

j )
T .

Regarding the hyperparameters ψ = (m,V,S) of G0
[step (c)], the posterior full conditional for m is (L + 1)-
variate normal with mean vector (B−1

m + n∗V−1)−1(B−1
m am +

n∗V−1μ̃∗), with μ̃∗ = n∗−1 ∑n∗
j=1 μ∗

j , and covariance ma-

trix (B−1
m + n∗V−1)−1. The full conditional for V is inverse

Wishart with scalar parameter aV + n∗ and matrix parameter
BV +∑n∗

j=1(μ
∗
j −m)(μ∗

j −m)T , and the full conditional for S is
given by a Wishart distribution with scalar parameter aS + νn∗
and matrix parameter (B−1

S + ∑n∗
j=1 �∗−1

j )−1.
Finally, we update the DP precision parameter α [step (d)]

using the augmentation method of Escobar and West (1995).
Specifically, an auxiliary variable u is introduced such that the
joint density of α and u has full conditionals p(u | α,data) =
Beta(α + 1,n) and p(α | u,n∗,data) = p gamma(aα + n∗,bα −
log(u)) + (1 − p)gamma(aα + n∗ − 1,bα − log(u)), where p =
(aα + n∗ − 1)/{n(bα − log(u)) + aα + n∗ − 1}.

A.2 DP Mixture Model for the Simulation
Example of Section 4.1

The MCMC posterior sampling algorithm for DP mixture
model (5) differs only slightly from the approach described
in Section A.1. Each θ i = (μi,�i,πi) is again updated us-
ing algorithm 5 from Neal (2000), in this case sampling each
proposed (μi,�i,πi) from p((μi,�i,πi) | {(μ�,��,π�) :� �=
i}, α,ψ) as implied by (7). The algorithm is again augmented
by a resampling step from the posterior full conditional for each
θ∗

j = (μ∗
j ,�

∗
j ,π

∗
j ), j = 1, . . . ,n∗. This step is aided by not-

ing that, given the allocation of observations to each unique
kernel component, (μ∗

j ,�
∗
j ) is conditionally independent of

π∗
j . Thus resampling for (μ∗

j ,�
∗
j ) proceeds exactly as de-

scribed in Section A.1. The full conditional for π∗
j is pro-

portional to g0(π
∗
j )

∏
{i:wi=j} π∗

j
xdi(1 − π∗

j )(1−xdi), resulting in
a beta(aπ + ∑

{i:wi=j} xdi,bπ + ∑
{i:wi=j}(1 − xdi)) distribution.

Sampling for α and ψ is the same as described in Section A.1.

A.3 DP Mixture Model for Tobit Quantile Regression
Example of Section 5.2

Here we describe the MCMC approach to sampling from
p(,α,ψ | data) for model (9), where  = (θ1, . . . , θn), with
θ i = (μi, σ

2
i , λi). We have

p(,α,ψ | data)

∝ p(α)p(ψ)p( | α,ψ)

×
∏
i∈I0

�(−μi/σi)
∏
i∈I1

N(yi;μi, σ
2
i )

n∏
i=1

Po(xi;λi),

where I0 = {i : yi = 0}, I1 = {i : yi > 0}, and p( | α,ψ) is given
by (7). The structure of the Metropolis–Hastings steps for the θ i

[step (a)] is the same with the models discussed in Sections A.1
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and A.2; however, when resampling, for j = 1, . . . ,n∗, the dis-
tinct components [step (b)] from

g0(μ
∗
j , σ

2∗
j , λ∗

j ;ψ)
∏

{i:wi=j}
Po(xi;λ∗

j )

×
∏

i∈I0∩{i:wi=j}
�(−μ∗

j /σ
∗
j )

∏
i∈I1∩{i:wi=j}

N(yi;μ∗
j , σ

2∗
j ),

the posterior full conditionals for μ∗
j and σ 2∗

j are no longer
available in a form easily drawn from. Sampling proceeds
through Metropolis–Hastings steps with normal proposals for
μ∗

j and gamma proposals for σ 2∗
j . The posterior full condi-

tional for λ∗
j is a gamma distribution with shape parameter

d + ∑
{i : wi=j} xi and rate parameter ψ4 + nj. The posterior full

conditionals for all four hyperparameters in ψ have standard
forms; specifically, they are given by a normal distribution for
ψ1 and by gamma distributions for ψ−1

2 , ψ3, and ψ4.
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Kottas, A., Krnjajić, M., and Taddy, M. (2007), “Model-Based Approaches to
Nonparametric Bayesian Quantile Regression,” in Proceedings of the 2007
Joint Statistical Meetings, pp. 1137–1148. [358,364]

Mroz, T. A. (1987), “The Sensitivity of an Empirical Model of Married
Women’s Hours of Work to Economic and Statistical Assumptions,” Econo-
metrica, 55, 765–799. [366]

Müller, P., and Quintana, F. A. (2004), “Nonparametric Bayesian Data Analy-
sis,” Statistical Science, 19, 95–110. [357]

Müller, P., Erkanli, A., and West, M. (1996), “Bayesian Curve Fitting Using
Multivariate Normal Mixtures,” Biometrika, 83, 67–79. [359]

Neal, R. M. (1997), “Monte Carlo Implementation of Gaussian Process Models
for Bayesian Regression and Classification,” Technical Report CRG-TR-
97-2, University of Toronto, Dept. of Computer Science. [362]

(2000), “Markov Chain Sampling Methods for Dirichlet Process Mix-
ture Models,” Journal of Computational and Graphical Statistics, 9, 249–
265. [368]

Scaccia, L., and Green, P. J. (2003), “Bayesian Growth Curves Using Nor-
mal Mixtures With Nonparametric Weights,” Journal of Computational and
Graphical Statistics, 12, 308–331. [357,364]

Sethuraman, J. (1994), “A Constructive Definition of Dirichlet Priors,” Statis-
tica Sinica, 4, 639–650. [358]

Tobin, J. (1958), “Estimation of Relationships for Limited Dependent Vari-
ables,” Econometrica, 26, 24–36. [365]

Tsionas, E. G. (2003), “Bayesian Quantile Inference,” Journal of Statistical
Computation and Simulation, 73, 659–674. [357]

Walker, S. G., and Mallick, B. K. (1999), “A Bayesian Semiparametric Accel-
erated Failure Time Model,” Biometrics, 55, 477–483. [357]

Yafeh, Y., and Yoshua, O. (2003), “Large Shareholders and Banks: Who Moni-
tors and How?” The Economic Journal, 113, 128–146. [362,364]

Yu, K. (2002), “Quantile Regression Using RJMCMC Algorithm,” Computa-
tional Statistics & Data Analysis, 40, 303–315. [357]

Yu, K., and Moyeed, R. A. (2001), “Bayesian Quantile Regression,” Statistics
and Probability Letters, 54, 437–447. [357,364]

Yu, K., and Stander, J. (2007), “Bayesian Analysis of a Tobit Quantile Regres-
sion Model,” Journal of Econometrics, 137, 260–276. [366,367]


	A Bayesian Nonparametric Approach to Inference for Quantile Regression
	Introduction
	Bayesian Mixture Modeling for Fully Nonparametric Regression
	Modeling Framework
	Choice of the Mixture Kernel
	Prior Specification

	Posterior Inference for Quantile Regression
	Data Illustrations
	Simulation Experiment
	Moral Hazard Data

	Nonparametric Tobit Quantile Regression
	The Modeling Approach
	Data Example

	Summary
	Appendix: MCMC Posterior Simulation Details
	DP Mixture of Multivariate Normals Model
	DP Mixture Model for the Simulation Example of Section 4.1
	DP Mixture Model for Tobit Quantile Regression Example of Section 5.2

	Acknowledgments
	References


