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Abstract. Computer models for the simulation of physical and environmental

phenomena are often regulated by complicated dependencies on unknown parameters.

When there already exists a large bank of simulated values, it may be difficult or

impossible to fit a complicated statistical model to the existing parameter evaluations

or to develop a Markov chain Monte Carlo (MCMC) sampling scheme, as the common

Bayesian statistical approaches would require. In response to this motivation for a fast

Bayesian statistical analysis which does not require model fitting or MCMC sampling,

we discuss a sampling importance resampling algorithm that works in conjunction with

kernel density estimation to resample from the original computer output according to

the posterior distribution of input values. We present two applications where input

parameter values are to be inferred from scarce observations and abundant simulated

output. One consists of a climate simulator and the other of a groundwater flow model.

1. Introduction

Problems in engineering and environmental studies often require the use of mathematical

forward simulation models which depend upon unknown parameters. The setting of such

parameters, or calibration of the simulator, is based upon a comparison of model output

against actual observations obtained through experimentation or from historical record.

Thus, inference about the optimal values for unknown input parameters constitutes

a statistical inverse problem. There is a rapidly growing literature on this problem,

but little discussion of how to perform fully Bayesian inference when large numbers of

computer runs are available, or when Markov chain Monte Carlo is not practical. This

paper addresses those cases.

The field of design and analysis of computer experiments has received considerable

attention during the last two decades (see, e.g., Sacks et al., 1989; Kennedy and O’Hagan,

2001; Santner et al., 2003). The classic setting of a computer experiment involves some

true process, ζ(x, θ), which in the real world characterizes a functional relationship

between sets of inputs {x, θ}, with x known and θ unknown, and an output y. Each of

x, y, θ may be multivariate and it is not uncommon that θ will depend upon x. With

additive noise, y(x, θ) = ζ(x, θ) + ε(x), where ε is a zero mean random variable with a

distribution which may depend upon x. The computer simulation function, η(x, θ), is

then incorporated into the framework such that y(x, θ) = η(x, θ) + e(x, θ), where the

simulator error, e(x, θ) = ζ(x, t) − η(x, θ) + ε(x), includes random noise as well as the

bias between simulation and reality.

The inverse problem involves solving for the values of underlying variables that

have led to an observed data set. Given a set of true response values y = {y1, . . . , yn},
with known inputs x = {x1, . . . , xn}, what is our uncertainty about the unknown input

θ = {θ1, . . . , θn} values that led to this response? An overview of such problems can be

found in the book by Kaipio and Somersalo (2004).

Characteristically, it is not possible to identify which portion of the discrepancy

between data and simulation is due to simulator bias. This is the case when, for example,

the real world response values at different known input locations are all assumed to
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correspond to a single unknown input θ vector (i.e., θi = θ ∀ i). This is also true when,

although there is a distinct θi corresponding to each (xi, yi) pair, the prior on θ holds

that the entire parameter set is a single realization of a stochastic process indexed by x

(e.g, when θ forms a spatial field and x is a spatial grid of locations). In these situations,

we cannot hope to estimate the bias and must assume that η(x, ·) = ζ(x, ·). The model

is then

y(x, θ) = η(x, θ) + ε(x), (1)

and the likelihood for θ is based upon only the residuals y − η(x,θ) = [y1 − η(x1, θ1),

. . . , yn − η(xn, θn)]′. For example, if the error is modeled such that ε(xi)
iid∼ N (0, σ2)

for i = 1, . . . , n, then Pr(y|x, η,θ) ∝ exp
(

− 1
2σ2

∑n

i=1 (yi − η(xi, θi))
2). Note that this

simplification, although necessary, should be used with caution: if we proceed in this

manner in analysis of a simulator which does not accurately characterize the relationship

between inputs and outputs, we will be merely tuning the computer simulator to match

the observed output rather than actually solving for any physical interpretation of θ.

We assume a Bayesian approach in undertaking to solve for θ. Optimal decisions

about unknown parameter values may then be made through minimization of a loss

function depending upon the posterior distribution for θ, which is of the form,

Pr(θ|x,y, η) ∝ Pr(y|x, η,θ)π(θ|x). (2)

The prior π(θ|x) can assume a variety of different forms, and the two applications

considered in this paper describe independent priors over each dimension of a single θ

vector, as well as a Gaussian Process prior for θ over a two-dimensional spatial grid

defined by x.

It is seldom possible to obtain an analytical solution for the density represented in

(2). Common strategies for inference center on Markov chain Monte Carlo (MCMC)

(see, for example, Gamerman and Lopes, 2006) sampling from the posterior for unknown

parameters. This approach requires repeated evaluation of a likelihood, Pr(y|x, η,θ),

which depends upon simulator output at unique parameter input locations. If η is easy

to evaluate, this inference is straightforward. However, it is often the case that, given a

set of parameter values, solving the forward problem and obtaining the corresponding

model output is very time consuming. Embedding this computation within an iterative

procedure such as MCMC will be prohibitively expensive. As a result, most applications

allow for a parametric statistical model η̂(x, θ|ψ), where ψ are the model parameters,

fit to a limited number of simulator runs to act as a cheap surrogate for the actual

computer model. A fully Bayesian analysis requires uncertainty about the statistical

surrogate model (i.e., about ψ) to be incorporated into the analysis. Thus the canonical

framework for a Bayesian solution to statistical inverse problems is to alternatively draw

from the conditional probability distributions for ψ given set of computer simulation

runs, and for θ conditional on real world data and the surrogate η̂(·; ψ). Strategies of

this sort can be found in the paper by Higdon et al. (2003).

The alternative methodology proposed herein is motivated by the common situation

where a huge bank of simulation runs have already occurred and it is desirable to find



Fast Bayesian Inference for Computer Simulation Inverse Problems 4

a solution based upon this data without building a surrogate model or making use of

iterative MCMC algorithms. This situation arises for a variety of different reasons.

Primarily, fully Bayesian fitting of a surrogate model around a huge number of runs can

get very expensive and may require more sophisticated modeling techniques than the

researchers are willing to entertain. In addition, if one wants to perform the inversion

repeatedly or on-line, over different observed {x,y} sets, multiple MCMC runs will be

very expensive and seldom feasible. There is thus a need for Bayesian inverse problem

methodology which provides an estimate of the posterior very quickly, using a huge data

set of simulation runs, without requiring a sophisticated statistical surrogate model.

Our proposed solution is based upon a weighted resampling of existing simulator

runs. The approach shares much in common with the ideas of Bayesian Melding

(Poole and Raftery, 2000; Bates et al., 2002), although our work here is more directly

suited for use in inverse problems. After the general methodological development in

the following section, we will consider in Section 3 two data analysis examples which

illustrate practical implementation of the approach and provide encouraging results. The

first example is an application to climate modeling, the second involves the problem of

measuring the permeability of soil with respect to groundwater flow. In the first example,

results from a set of climate simulator runs are compared with actual temperature data.

Inference for the inputs to a climate model simulator translates into knowledge about

important properties of the climate system. In the second example, the data correspond

to groundwater flow at a site with substantial underground pollution, and this is

compared with huge bank of simulated flow results for permeability fields generated

from a spatial prior. Quantifying the permeability of the ground is important for the

soil remediation effort.

2. Methodology

2.1. Sampling Importance Resampling

Sampling Importance Resampling (SIR) is an extremely fast method for sampling from

a posterior distribution (Rubin, 1988). Given a sample of points θ̃ = {θ̃1, . . . , θ̃m} from

the probability distribution defined by probability g(θ), a sample from the distribution

characterised by a density proportional to the unnormalized h(θ) (i.e., from f(θ) = h(θ)

/
∫

h(θ)dθ) is obtained by resampling θ̃ with replacement such that the probability

assigned to each θ̃i is equal to the SIR weight w(θ̃i) = w⋆(θ̃i) /
∑m

j=1 w⋆(θ̃i), where

w⋆(θ̃i) =
h(θ̃i)

g(θ̃i)
. (3)

If the support for f is contained within the support for g, the resampled points will have

the desired distribution.

The SIR weights create an empirical probability function for our initial sample, and

this defines a discrete approximation to the distribution corresponding to f . Hence, the

sum Î = 1
m

∑

w⋆(θ̃i) is implicitly relied upon as an approximation to I =
∫

h(θ)dθ. The
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variance of this estimator is approximately proportional to var[w(θ)] for θ ∼ g(θ). Thus

the success of an SIR scheme depends upon the variability of the resampling weights,

as this is directly related to the variance of our density estimator.

The paper by Skare, Bølviken, and Holden (2003) derives convergence properties

for SIR algorithms and proposes a new Improved SIR (I-SIR) algorithm. For their I-SIR

with replacement, the SIR weights are adjusted to provide the I-SIR weights v(θ̃i) =

v⋆(θ̃i) /
∑m

j=1 v⋆(θ̃i), where

v⋆(θ̃i) ∝
w(θ̃i)

∑

θ̃j∈θ̃:j 6=i w(θ̃j)
.

They show that the relative point error for the density estimate f̂m(θ̃) at θ̃ ∈ θ̃ based

upon a Rubin SIR algorithm with sample size m is such that

f̂n(θ̃)

f(θ̃)
− 1 =

1

m
(1 − w(θ̃) + var{w(θ)}) + O(

1

m2
)

while the relationship for I-SIR is simply

f̂n(θ̃)

f(θ̃)
− 1 = O(

1

m2
)

It is important to note that the variance of the resampling weights, var{w(θ)}, appears

in the leading terms of the Taylor expansion behind the O( 1
n2 ) term in (4), such that

although the effect of highly variable w values is rendered negligible asymptotically for

I-SIR, the variance of the weights should still be carefully monitored. Skare et al. also

show that an SIR algorithm without replacement has better asymptotic convergence

in total variation norm than any corresponding SIR algorithm (improved or not) with

replacement. However, in our experience, for finite initial sample sizes the without

replacement algorithms led to a posterior that was more diffuse than the data would

have indicated.

2.2. Sampling Inverse Importance Resampling

The motivating applications consist of the real world data D = {x,y} = {xj, yj :

j = 1, . . . , n}, accompanied by a bank of simulated response values corresponding to

a sample of input vectors, S =
{

θ̃,x, {η(xj, θ̃i) : i = 1, . . . ,m; j = 1, . . . , n}
}

. Recall

that the goal is to estimate the true θ, where y(x, θ) = η(x, θ) + ǫ(x), conditional on

D and S. The inverse likelihood is inexpensive to evaluate at any input location where

the simulator has already been run. Suppose that the inputs for our bank of computer

output were sampled independently from some distribution defined by the density g(θ).

We are then able to sample from the approximate posterior for θ given D and S by

resampling with replacement from θ̃ according to either the SIR or I-SIR probability

function built upon the basic weights

w⋆(θ̃i) =
π(θ̃i)

g(θ̃i)
Pr(y|{η(xj, θ̃i) : j = 1, . . . , n}).
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Thus application of the I-SIR algorithm is straightforward, with v⋆(θ̃i) defined in terms

of w⋆ as in Section 2.1, and we are able to obtain a discrete approximation to the inverse

problem posterior without having to re-run the computer simulator or fit a surrogate

model. Alternatively, we can use these inverse importance weights in a Monte Carlo

integration for point estimation of any function of θ.

In order to calculate these weights, we need to know g(θi) at each θi ∈ S; that is,

we need to know the density for the sampled simulator input locations. When a large

bank of simulator runs is available, it is often the case that the input configuration has

been decided by some previous modeler and there is no available information about the

nature of g. In fact, it may seem odd to assume that the sampling was random at all.

However, the role of g in the weights is to counter the effect of the original sampling

on any posterior estimate, and this remains the case whether or not we believe that g

truly describes the sampler’s intent. In the case where the variables θ̃ are discrete with

a manageable support, we can compute the empirical probability function to estimate

g(θ̃). When this is not possible, we use a Kernel Density Estimate (KDE) for g. The

literature on KDE methods is vast, and the best choice will be application specific. See

the books by Bowman and Azzalini (1997) and Simonoff (1996) for examples. With

the standard choice of Normal kernels, this generally describes estimates of the sort

ĝ(θ̃) = 1
m

∑m

i=1 N(θ̃|Mi, V h2), where V is an estimate of the variance of θ̃, h is a

smoothing parameter or bandwidth, and Mi is a location dependent upon θ̃i. The

version which we use below, with shrinkage for the individual means, is described in

West (1993) such that Mj =
√

1 − h2θ̃j +(1−
√

1 − h2) 1
m

∑m

i=1 θ̃i and h =
(

4
m(1+2p)

) 1

1+4p

,

where p is the dimension of θ̃ and V is the sample covariance matrix.

3. Examples

3.1. Climate Model

Computer climate models contain parameterizations that allow for the exploration

of climate system properties. In this application we consider the MIT 2D Climate

Model described in Sokolov and Stone (1998). In the 2D models, like the one

that is considered in this paper, climate system properties are controlled via simple

parameterizations. Here we study the following three parameters: climate sensitivity,

deep ocean temperature diffusion rate, and net anthropogenic aerosol forcings. Climate

sensitivity, S, is defined as the equilibrium global mean temperature response to a

doubling of CO2. This sensitivity has been singled out as a critical parameter with

extensive uncertainty. Deep ocean temperature diffusion rate, Kv, is controlled by

varying a diffusion coefficient. Net anthropogenic aerosol and unmodeled forcings,

key inputs to the simulator, are written here as Faer. These quantities can not be

derived from physical principles and must be inferred by comparing computer output

to historical records in a typical inverse problem setting. Estimating their values and

assessing their variability is key for forward looking projections of climate change that
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may be used for policy making.

The output from the MIT 2D climate model, considered in this paper, consists of

temperatures over a grid of zonal bands corresponding to 46 latitudes, averaging over

all longitudes in the band. It has 11 vertical layers for a grid of 506 cells for every time

step. Typical output corresponds to periods of 50 years with data every 30 minutes.

This information can be summarized in a variety of ways. A standard approach is to

run the MIT 2D climate model for many choices of the uncertain parameters S, Kv

and Faer, selected systematically on a non-uniform grid (Forest et al., 2000, 2001, 2002,

2005). The grid considered in this paper consists of 499 points. To summarize this

data in a way that is useful for understanding possible global climate change, three

different statistics or “diagnostics” are used. See Sansó et al. (2008) for further details.

In this paper we focus on the Deep ocean temperature trend, calculated for the period

[1948–1995]. The corresponding observational data are annual deep ocean temperature

measurements obtained from Levitus et al. (2000), for the period [1950–1995].

Following the notation in previous sections we have that θ =(S, Kv, Faer). The

dependence of y on θ is characterized by the deep ocean temperature gradient, βθ. The

assumption of a linear trend leads to the full model, yi = η(xi, θ) + εi = αθ + xiβθ + εi,

where the yi correspond to the annual deep ocean temperature obtained from the Levitus

climatology, xi = (yeari − 1950), αθ = ȳ − βθx̄, and εi
iid∼ N(0, σ2), i = 1, . . . , 45. The

probability model is thus

Pr(y|βθ,y,x) ∝ exp

(

− 1

2σ2

45
∑

i=1

(yi − αθ − βθxi)
2

)

.

The simulator output is an estimate of deep ocean temperature gradient conditional

on an input θ̃ vector of values for (S , Kv , Faer). Using different starting values to

initialize the model, it is possible to obtain ensembles of temperature simulations. In

our application we obtain four random ensembles, leading to four output temperature

trends, say {bi1, . . . , bi4}, for each input θ̃i. The full simulator output is defined for

the purposes of the inverse problem as η(x, θ̃i) = αθ̃i
+ xβθ̃i

, where βθ̃i
= 1

4

∑4
j=1 bij

and αθ = ȳ − x̄βθ̃i
. Assuming a variance of τ 2

θ̃i
for the four bij, this implies that

var{η(x, θ̃i)} = τ 2
i (x− x̄)2/4 introduces an additional source of variability that needs to

be incorporated into the conditional likelihood. Setting each τ 2
i to the sample variance

of {βθi}i=1..4, and plugging-in s2 = 1
43

∑45
i=1(yi − αOLS − xiβOLS)2 in place of σ2 (αOLS

and βOLS are the least squares temperature trend estimates), we obtain the completed

conditional likelihood for each θ̃i:

Pr(y|βθ̃i
,y,x) ∝ exp



−
∑45

i=1(yi − αθ̃i
− xiβθ̃i

)2

2
(

s2 +
τ2
i

4
(xi − x̄)2

)



 .

An informative prior, π(θ), was elicited from the literature about climate properties.

According to this, each input variable is assigned an independent prior with S/6 ∼
Be(3.5, 6), Kv/15 ∼ Be(2.85, 14), and (Faer+1.5)/2 ∼ Be(4, 4), where Be(a, b) denotes

the Beta probability distribution with mean a/b.
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Figure 1. Resampling and Density Estimates under an informative prior. The solid

line is the KDE of the posterior resample and the dotted black line is the KDE of

the original sample. Scatterplots show the original sample and the colours indicate

resampling frequency (rising from yellow to red; grey were not resampled).

Following the steps in Section 2.2, this prior is combined with Pr(y|βθ̃i
,y,x) and

the KDE for g(θ̃), the sampling distribution for the input vectors, to obtain I-SIR

weights. Figure 3.1 illustrates the results of the resampling based upon these weights.

Due to the sparsity of the original sample, the posterior resampling is concentrated on a

relatively small number of particles. However, even in the presence of these limitations,

it is possible through careful choice of posterior KDE to properly visualize the posterior.

Certainly, we are able to see the strong influence of the prior. But it is also evident that

the data are influencing our posterior, and we see that our posterior uncertainty about

S has been pushed to the right. This is an important result since, as mentioned above,

this is a critical parameter with extensive uncertainty.

We also obtained a posterior resample under a non-informative prior (i.e., π(θ̃i) =
1
m

) and we see in Figure 3.1 that the results are very different from those obtained under

the informative prior, with more uniform resampling weights and a higher proportion

of the original particles included in the posterior sample. As the posterior weights were

more uniform, we have a larger number of sample particles included in the resample.
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Figure 2. Resampling and Density Estimates with a non-informative prior. The solid

line is the KDE of the posterior resample, the dotted black line is the KDE of the

original sample, and the blue line is the prior density. Scatterplots show the original

sample and the colours indicate resampling frequency (rising from yellow to red; grey

were not resampled).

However, the data indicate that S is likely near the higher end of our support, with or

without prior information on the variables.

3.2. Groundwater application

Our second example is one in groundwater flow. Of interest is a spatial field of

permeability values, parameterized on a 14x11 grid. Thus we need to perform inference

on a high-dimensional (154) but highly correlated parameter space.

This particular data set comes from part of a larger study Annable et al. (1998);

Yoon (2000) of an area at the Hill Air Force Base in Utah, where flow experiments were

done to learn about the soil structure as part of a project in cleaning up a polluted

section of the ground. In order to perform effective soil remediation, it is necessary

for the engineers to understand the soil structure, in particular the permeability field.

Permeability is a measure of how well water flows through the soil at a point, and it
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varies spatially. It is difficult to measure, with core samples providing expensive yet noisy

estimates at point locations, so flow experiments are often conducted instead. Thus the

goal is to find the distribution of permeability configurations most consistent with the

flow data, which involves matching the observed flows to the output of flow experiments

on the proposed permeability configuration as determined by computer simulators.

Such simulators solve systems of differential equations numerically to determine flow

experiment outputs under various possible aquifer configurations.

The field experiment involves four injector wells along the left side of the aquifer

which force water across the site to the three production wells along the right side of

the aquifer. Water is pumped in until the system reaches equilibrium. Then, a tracer

is injected at the injector wells, and the amount of time taken for the tracer to reach

each of the five sampling wells (situated between the injector and production wells) is

recorded as the breakthrough time. These five breakthrough times are the available data.

A previous analysis of this data set, along with additional details on the experiment,

can be found in Lee, et al. (2002). Following the standard approach in the literature,

we use an independent Gaussian likelihood for the breakthrough times

Pr(y|θ, σ2) ∝ exp

(

− 1

2σ2

5
∑

i=1

(yi − η(θ))2

)

,

where the observed breakthrough times at the sampling wells are denoted by yi, the

θ is the theoretical 14x11 permeability field, and η(θ) is the mean breakthrough time

corresponding to this permeability structure.

The simulated data consists of mean breakthrough times for 1,000,000 permeability

fields which were run through the program S3D developed by King and Datta-Gupta

(1998). These fields are all generated from a Gaussian process with a Gaussian

correlation structure and correlation parameters consistent with the expected geologic

structure of the study site. In other words, θ̃ was generated from our spatial prior for

the true θ, such that g(θ) = π(θ) in the notation of Section 2 and there is no need

for a KDE. Hence, the I-SIR probabilities for these 106 fields are derived from the

basic resampling weights, w⋆(θ̃i) =∝ exp
(

− 1
2σ2

∑5
i=1(yi − η(θ̃i))

2
)

, where the expected

breakthrough time produced by the computer simulator is denoted by η(θ̃i) and σ2 is

fixed to a value based on input from the geologists.

We resampled the permeability weights according to the derived I-SIR probabilities.

Figure 3 shows the resulting posterior mean permeability field in the upper left plot,

with blue (dark) representing lower permeability values and yellow (light) for higher

values. The resulting picture is consistent with the slow breakthrough time observed

near the center of the site and the fast breakthrough time observed at a sampling well

in the lower middle section of the site. The upper right plot shows the spread of a 90%

credible interval, with more variability apparent for the larger permeability values. The

lower two plots show two of the modes in the resampling of the fields.

Figure 4 shows the re-sampling frequencies for each of the million fields that were

run through the simulator. There are four or five more prominent fields, but there are
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Figure 3. Posterior mean permeability field, variability estimate, and two of the highly

weighted sample fields. Permeability is rising from blue to yellow, and variability is
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a number of fields that were re-sampled and no single field dominates the sampling, so

we are pleased by the lack of weight degeneracy, and thus more confident in our results.

We are also pleased that our present results are comparable to those of earlier studies

Lee et al. (2002), but here our resampling took only about five seconds, compared to

the week-long MCMC runs that had been done previously.

4. Conclusion

In each of the two applications, our results were comparable to those obtained through

alternative, more conventional, methodologies. Such methods, outlined in the already

cited literature, typically involved some sort of surrogate modeling and MCMC sampling

and required days of computing time. Resampling by inverse importance provided

solutions that, not including the time spent running the computer model at the bank of

input locations, required only 5-10 seconds of computing time. While we make no claim

that our method is superior to or should replace the conventional solutions, it may be

the best choice when a very fast solution is required. If, for example, the inversion needs

to be performed repeatedly over a large set of observed data-values, or there already

exists a massive bank of simulator output, resampling for inverse problems provides a

natural solution.
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