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Abstract

Sometimes a larger dataset needs to be reduced to just a few points, and it is desirable

that these points be representative of the whole dataset. If the future uses of these

points are not fully specified in advance, standard decision-theoretic approaches will

not work. We present here methodology for choosing a small representative sample

based on a mixture modeling approach.
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1 Introduction

Data reduction has a wide variety of applications, and there exist a variety of suggested ap-

proaches (Kruskal, 1976; Späth, 1980; Jolliffe, 1986, for example). Here we explore method-

ology for data reduction in the form of choosing a small number of points which are rep-

resentative of the dataset. We view this in the context of clustering, in that we want each

selected point to represent a cluster of points in the original dataset.

This project originated from a collaboration with scientists at Sandia National Labora-

tories who were studying circuit devices via both physical experiments and computer sim-

ulation. Specifically, the overall goal of this project was to both “calibrate” and “validate”
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radiation-aware models of electrical circuit devices. In order to satisfy the requirements of

both processes, the data must be divided such that a small representative sample of the phys-

ical data is used in the calibration process, with the remaining points held out for validation

of the model.

In this context, the process of calibration uses experimental observations of a response

to inform upon uncertain input parameters of a computational simulation (Kennedy and

O’Hagan, 2001; Campbell, 2002; Trucano et al., 2006, for example). In other words, rele-

vant model parameters are adjusted so that the agreement between the code calculations

in the simulator best match the observed behavior illustrated by the experimental data. A

calibrated model both shows improved predictive capabilities and minimizes the information

lost by using a numerical model instead of the actual system. Experimental data is a critical

component of this process. Inadequate data can render calibration useless and lead to faulty

model predictions. Furthermore, data sufficiency is not merely dependent on quantity, and

uncertainties in the model are not necessarily decreased by calibrating to a larger data set

(Moore and Doherty, 2005). Instead, the quality, relevancy, and accuracy of the data must

also be considered.

In contrast, the validation process is applied in order to quantify the degree to which

a computational model is an accurate representation of the real world phenomena it seeks

to represent (Trucano et al., 2002). Validation is critical to ensure some level of predictive

capability of the simulation codes so that these codes can be subsequently used to study

or predict situations for which experimental data are unavailable due to environmental or

economic limitations (Oberkampf et al., 2003). It should be noted that model validation is a

major effort regularly undertaken by numerous government agencies and private companies.
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Satisfying validation benchmarks requires a significant amount of relevant data.

The problem of separating an experimental data set for calibration and validation is

similar to a common challenge encountered in machine learning—how to split up the data

into training versus testing sets. In the training phase of classification, the classifier uses a

subset of the data to “learn” how to classify objects. Similarly, in the calibration process,

the computational model “learns” how to best set inherent model parameters using the given

experimental data. Then, in the validation phase, the remaining data set is used to “test”

the predictive capabilities of the calibrated model just as is done in the testing phase of

classification. Considering this analogy, it should be clear that the calibration (or training)

data set must be representative of the entire data set. Moreover, adequate data must remain

to substantiate validation results. Note that this problem of selecting a calibration data

set should be solved using a robust, repeatable method in order to lend credibility to the

validation (Trucano et al., 2002).

We note that this problem requires the selection of points in the dataset, as the data have

already been collected and there may not be an opportunity to collect data at new locations.

Because some aspects of our problem are classified, some of the information in the dataset

available to us is actually summary information, and thus raw-level data that might be of

interest to the scientists will only be available from points in the original experiment. So

while points outside the dataset may be more statistically representative of clusters in the

data, experimental information is not available for them, and we must restrict ourselves to

actual datapoints.

An obvious approach to the problem of selecting a calibration data set is to frame it as one

of an optimal decision, choosing the points to maximize a measure of utility, as in Müller et al.
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(2004). However, in this case, we did not have access to the computer simulators, because

of national security classification. Not having access to simulators is actually not unusual

as many codes are proprietary or not widely distributed. Moreover, the computational cost

of many simulators can be prohibitive to utilizing a formal utility function. Furthermore,

our collaborators did not want to specify a particular utility, as they wanted to be able to

use the representative sample for multiple possible future goals, some of which they might

decide based on future analyses. In fact, specifying a specific utility is ineffective in the case

where the development of the simulator is ongoing because when a model is updated, the

calibration must be repeated. Therefore, to increase the usefulness of this exercise, we were

asked to base our representative set solely on the experimental data. This would eliminate

the need to select a representative set each time a change was implemented in the simulator.

This request completely eliminated any approach using an explicit evaluation of a formal

utility function.

One related approach in the literature is data squashing (Dumouchel et al., 1999; Madigan

et al., 2002; Owen, 2003), where the idea is to create a relatively small pseudo-dataset that

when appropriately weighted, is representative of the original large dataset for a variety of

uses. The pseudo-dataset is constructed by segmenting the data and then matching moments

or using using likelihood-based methods to ensure that the properties of the reduced set

match those of the larger set. However, the pseudo-datapoints generated typically are not

points in the original dataset, and thus the methodology does not apply directly to our

problem. One could imagine a re-derivation that restricts the pseudo-datapoints to be real

datapoints, but we do not pursue that idea herein.

Instead, we turn to a more intuitive approach, that of mixture modeling, both in the con-
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text of clustering (Fraley and Raftery, 2002) and density estimation (Roeder and Wasserman,

1997). We fit a mixture of Gaussians, using an informative prior to help separate the com-

ponents. We restrict the centers to be at observed datapoints, and then declare the fitted

centers to be the representative sample. In Section 2 we describe our motivating example

data. Section 3 details our selection methodology. Results are given in Section 4.

2 Circuit Device Experiments

This problem arose from an extended study at Sandia National Laboratories on photocurrent

radiation aware models for electrical devices. The interest is in understanding current out-

put as a function of the intensity of a pulse of gamma radiation applied to the devices. The

current output is characterized by the peak amplitude reached during the experiment. The

range of possible radiation doses is somewhat limited at any given testing facility, so experi-

ments were run at three different facilities to span a broader range of possible dose rates. In

principle, the relationship between dose rate and peak amplitude should not depend on the

facility. Experimental runs were done at three different temperature settings. In principle,

results could depend on temperature, and in fact separate computer simulation models are

used for each temperature. Further details on the physical experiment are available in Gray

et al. (2007).

The data for three of the devices is presented here. These three devices demonstrate the

range of issues that arise in our analyses. We work with natural logarithm transformations

of both the dose rate and the peak amplitude, as it helps linearize the problem. Figure 1

shows one device where there is a clear linear relationship between (log) dose rate and (log)

peak amplitude, and no apparent effect from either temperature or facility. Figure 2 shows
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a device where the relationship is clearly linear, but the intercept appears to vary by facility.

Again, temperature seems unimportant. Also, for facility 3, where the most experiments

were run, there seem to be two parallel lines in the data. No information was available to us

that could explain this phenomenon. Finally, Figure 3 shows a device where the relationship

does not appear to follow any functional form, as there seem to be three separate branches

on the right half of the plot. There is no clear effect from either temperature or facility. In

summary, there appears to be no effect by temperature, despite an interest by the scientists

in treating the temperatures separately. Typically there is no effect by facility, as expected by

the experimenters, but occasionally the facilities do differ. And in some cases the relationship

is clearly linear, but in others the relationship is not any functional form, as the same dose

rate may correspond to several quite different possible outputs.
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Figure 1: Electrical Output versus Dose Rate for Device A
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Figure 2: Electrical Output versus Dose Rate for Device B

3 Selection Methodology

Most clustering techniques view the formation of clusters as the only goal (Hartigan, 1975;

Arabie et al., 1996; Duda et al., 2001, for example). Here we could first form clusters, then

select one point from each cluster. However, it would make more sense to form the clusters

with the intention of choosing a point from each, and thus take this into account during the

clustering process. Thus we take the approach of fitting a mixture of normal densities to the

data, but we restrict the centers of the distributions to the set of datapoints, and thus the

fitted centers are the required sample. This approach is similar to standard mixture model

or model-based clustering (Fraley and Raftery, 2002), but with the restriction on the cluster

means directly addressing our need for finding representative points. This approach can also

be thought of in the context of density estimation (Roeder and Wasserman, 1997), where the
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Figure 3: Electrical Output versus Dose Rate for Device C

density of the whole dataset is now being represented by distributions centered at a small

set of observed datapoints.

Let k be the desired number of representative points. We fit a k-component mixture

of Gaussians, restricted so that the centers of the components are data locations. Each

component is allowed a different mean µj and covariance Σj, as well as a different weight

pj, j = 1, . . . , k. We denote the observed data by (Xi, Yi), i = 1, . . . , n, where X is the

explanatory variable or variables and Y is the response. In our case, X and Y are univariate

(the log dose rates and the log peak amplitude respectively), and thus µj = (µ1, µ2) and Σj

are bivariate, although this setup clearly generalizes to multivariate X. The full likelihood

for the model is:

f(µ,Σ,p|x,y) =





k
∏

j=1

I{µj=(xrj
,yrj

)}





k
∑

j=1

pj(2π)−n/2 |Σj|
−1/2
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where
∑k

j=1 pj = 1, I{} is the indicator function that takes value one when its subscript set

is true and zero otherwise, and rj ∈ {1, . . . , n} for j = 1, . . . , k. Thus the indicator functions

specify in the likelihood that each component center must be a datapoint.

In order for the chosen centers to be representative of the whole dataset, we want them to

not only be close to the centers of density, but also to be at least somewhat representative of

the range of the data. In our case, we know that our collaborators plan to use the points for

calibration of computer code, so it could be useful if the selected points are reasonably spread

out across the range of values observed. If the data are spread evenly, this is not an issue.

However, the data may be unevenly distributed, and thus we want to incorporate our desire

for some spread in the model. We do this through the Bayesian paradigm, specifying a prior

for the component means that spreads them out. We can also use a prior for the component

weights that shrinks them towards equality at 1/k, thus incorporating a desire that each

selected point represents somewhat equal portions of the dataset. Of course, clumps in the

data will mean that exactly equal portions are undesirable, so the Bayesian approach gives

us an explicit, transparent, and coherent mechanism for balancing observed data features

with modeling intentions. Thus, we take the prior for each µhj to be to a normal distribution

centered j/(k + 1) of the way from the minimum observed value to the maximum observed

value for each dimension h ∈ {x, y}. The choice of the covariance matrix for this normal

prior specifies the degree to which we want separation in the selected points versus allowing

the data to completely dictate the cluster centers. The prior for the weights, p, is a Dirichlet

distribution with all k parameters equal to the number of total observations divided by the
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number of representative points, i.e., n/k. The prior for each of the diagonal (variance)

components of Σ is inverse-gamma, with different parameters for each element to reflect for

the possibly different ranges of the X and Y data. The prior for the off-diagonal (correlation)

components of Σ is uniform on [0, 1] for the correlation (scaled by the diagonal elements to

get the covariance matrix).

We fit the model with Markov chain Monte Carlo to find the maximum a posteriori (MAP)

parameter values, and use the MAP component centers, µ, as the representative sample.

Metropolis-Hastings proposals are used for all of the parameters, because the summation

in the likelihood makes Gibbs sampling difficult. For Σ, a multivariate random-walk style

proposal is used to propose an update for the whole matrix in a single step, with standard

Metropolis-Hastings accept/reject procedures. For updating the mixing proportions, the

proposal p∗ is drawn from a Dirichlet distribution centered at the current values pl, i.e.,

p∗ ∼ Dir (pl1, . . . , plk). For updating the center points µ, it is helpful to sort the data, so

that the proposals for moving the centers can be done with respect to the ordered data. Each

µj is updated individually, with a proposal to move it with equal probability to the closest

datapoint in each direction (in a one-dimensional representation, this would be one point on

each side; in a two-dimensional problem, one could move along coordinate axes, or one could

reduce the problem to one dimension by moving along the first principal component). In

some problems, better mixing may be achieved by allowing a move to several points away.

As with most mixture model problems, the posterior is rather multi-modal, and one can

easily become stuck in local modes. Thus it is helpful to do a number of runs with different

starting values. We have run each model at least ten times and taken the result of highest

posterior probability.
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4 Results

Our collaborators asked for k = 6 points for each temperature level for each device. We

included data from all facilities together, and did not label the points within the selection

algorithm, on the premise that if the facilities are interchangeable as they were supposed to

be, then the points could be selected without regard to the facility. However, if the facilities

did turn out to be different, then we would expect separate clusters to form for different

facilities, and that is exactly what we see in those cases. Thus the issue of the different

facilities is automatically accounted for by the clustering.

We show here three examples of the clusters and representative points that were found.

In each case, the log dose rates are on the X axis and the log peak amplitude responses are

on the Y axis. The ellipses are the contours at one standard deviation for each of the normal

mixture components.
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Figure 4: Representative Samples and Clusters for Device A
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Figure 4 shows device A at temperature 25, where the data are fairly linear. The chosen

points are fairly spread out, although points 4 and 5 are relatively close to each other, which

takes into account the larger amount of data in that region. Clusters 4 and 5 overlap, because

of both the linear structure and the concentration of the data. Note that cluster 3 includes

data from two different facilities, and that facilities do appear to be interchangeable for this

device. For all of the mixture components, the fitted covariance matrices show a strong

correlation, as would be expected for linearly-related data.
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Figure 5: Representative Samples and Clusters for Device B

Figure 5 shows device B at temperature 25. While cluster 2 encompasses both facilities

2 and 3, clusters 3 and 6 separate facility 1 from facility 2 in clusters 4 and 5. Also note that

clusters 4 and 5 pick up the parallel line fits that were seen in Figure 2. Thus the selected

points do clearly represent the key aspects of this dataset.

Finally, Figure 6 shows device C at temperature 75, where the relationship between dose
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Figure 6: Representative Samples and Clusters for Device C

and response is much less clear. Cluster 1 has a strong correlation, encoding a tight linear

relationship at low dose rates. Clusters 2, 3, and 5 represent points in the main linear trend,

although there is more variability around the trend than in the previous examples. Cluster

4 models the lower branch of points away from the main trend, which includes observations

from both facilities 1 and 3. Cluster 6 models points from facility 1 which are on an upper

branch away from the main trend.

5 Conclusions

The mixture model approach allows us to cluster the data with the ultimate goal of using

the cluster centers as points representative of the clusters and of the dataset as a whole.

Working within the Bayesian paradigm allows us to formally encode desirable properties of
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representation, such as spread across the domain and balance in cluster sizes. Our formula-

tion provides a general solution, not tied to any specific utility function, and thus applicable

when a utility function cannot be formally specified. Hence, these sets are still useful if the

model is updated and needs to be re-calibrated.

Our examples showed that the mixture approach can effectively segment the data in both

the case of a strong functional relationship, as well as in the case where the relationship is

non-functional. It can automatically account for latent variables when appropriate (e.g.,

facility in Figure 5, or the separation of clusters 4 and 5 in Figure 5 where the reason for the

separation is not known to us). We also note that our collaborators used the resulting data

sets to successfully perform calibrations. Prior to this work, the calibration sets were chosen

using expert opinion about which experiments might provide the most useful information.

The calibration results with the sets chosen by the method described here led to an improved

calibration process (Gray et al., 2008).

This approach is clearly generalizable to the case where the number of points is not

specified ahead of time, but where one has an approximate idea of how many points are

desired. A prior can be placed over the number of mixture components, which would then

be treated as another unknown. Fully Bayesian inference extends naturally in this setting.

It is worth noting that the points chosen are dependent on the entire dataset, and thus

dependent on the points in the validation sample. While traditionally one may select ran-

domly from the data to ensure independence between the training and test sets, that requires

a larger training sample. By selecting the points carefully, we can represent the dataset with

a smaller training sample, at the cost of dependence with the test set.

Our methods give intuitively reasonable results for the two-dimensional motivating ex-
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ample. We expect that they will also perform well in higher dimensions, when the results

may not be easily visualizable and automated methods are more critical. Finally, we note

that the data-centered clustering concept may generalize to other sorts of problems, such as

stratified sampling.
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