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Abstract

Bayesian Nonparametric Analysis of Conditional Distributions

and Inference for Poisson Point Processes

by

Matthew Alan Taddy

This thesis provides a suite of flexible and practical nonparametric Bayesian analysis

frameworks, together related under a particular approach to Dirichlet process (DP) mix-

ture modeling based on joint density estimation with well chosen kernels and inference

through finite stick-breaking approximation to the random mixing measure. Develop-

ment of a novel nonparametric mean regression estimator serves as an introduction

to a general modeling approach for nonparametric analysis of conditional distributions

through initial inference about joint probability distributions. Three novel regression

modeling frameworks are proposed: quantile regression, hidden Markov switching re-

gression, and regression for survival data. A related approach is adopted in modeling

for marked spatial Poisson processes. This class of models is then expanded to a full

nonparametric framework for inference about marked or unmarked dynamic spatial

Poisson processes which occur at discrete time intervals. This involves the development

of a version of the dependent DP as a prior on the space of correlated sets of probability

distributions. Posterior simulation methodology is contained throughout and numerous

data examples have been provided in illustration.
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Chapter 1

Introduction

The essential inference procedure of a Bayesian is to, conditional on data ob-

servations, update prior belief about the stochastic mechanisms under which the data

arise and predict future observables. In parametric Bayesian analysis, the prior beliefs

are formally defined as probability distributions for parameters of an assumed model.

Nonparametric Bayesian analysis instead dispenses with the parametric model assump-

tion, and prior beliefs are expressed as probability measures assigned directly to the set

of probability distributions which could possibly have generated the data.

Contemporary work on Bayesian nonparametrics may be classified into four

main categories: theory, modeling, computation, and application. Theoretical work is

concentrated on the construction of classes of measures on spaces of random functions

and on study of the asymptotic properties of resulting posterior point estimates. Mod-

eling research seeks to develop general frameworks for inference built around the use

of a nonparametric prior measure. The computational research is required to develop
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efficient posterior simulation algorithms for these models, and the end goal of this whole

effort is that the modeling frameworks will be put to use in careful application to chal-

lenging data analysis problems. This thesis falls firmly within the modeling category,

and should be read with this motivation in mind. Hence, the development of nonpara-

metric prior models and of posterior simulation algorithms was always undertaken as a

step towards a particular flexible and practical framework for nonparametric Bayesian

inference. And although the presented methodology will be immediately applicable in

practical data analysis, the examples contained herein were not intended to provide

complete case studies.

There is, of course, a spectrum of Bayesian analysis methodologies which spans

the divide between standard parametric analysis (such as mean estimation for a nor-

mal distribution) and full nonparametric analysis (with priors induced by stochastic

processes defined over the space of all possible distribution functions). For instance, a

regression model with a Gaussian process prior for the regression function may be re-

ferred to as a nonparametric regression model inasmuch as there is no parametric form

assumed for the mean regression line. However, the Gaussian process covariance is spec-

ified through use of a parametric covariance family with process stationarity typically

assumed. Similarly, finite mixture models supplant the assumption of a single paramet-

ric family for the data density with the assumption of a finite mixture of parametric

density kernels. The model flexibility increases with the number of mixture components

or with modeling for an unknown number of components. And with the specification of

a nonparametric prior for the random mixing distribution (thus assigning probabilities
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to the set of possible mixing measures for parameters of the density kernel) the analysis

is formally nonparametric.

This latter approach, termed Bayesian nonparametric mixture analysis, is the

one utilized throughout this thesis. In particular, the focus is placed on density models

consisting of mixtures of parametric kernels with a Dirichlet Process (DP) prior assumed

for the random mixing distribution. The historical context of this modeling approach

is reviewed, with reference to the proposed methodology, throughout this document.

DP mixture priors are huge. They have become the flexible prior du jour, and

are appearing as the default nonparametric modeling extension in fields as diverse as

biometry, econometrics, and machine learning. Much of the rise to prominence has been

caused by the same factors which account for increased usage of Bayesian nonparamet-

rics and Bayesian statistics in general; namely, the declining cost of computing power

coupled with accessible Markov Chain Monte Carlo (MCMC) simulation algorithms and

a proven record for predictive ability. But the appeal of DP priors, in particular, owes

much to the elegance and intuitive simplicity of the Pólya urn formulation for the pos-

terior predictive distribution as a mixture of point masses on the observed data and the

underlying prior base measure αG0. Here, α > 0 corresponds to prior precision and G0

is a probability distribution with the same support as the modeled random distribution.

Thus for the DP mixture model, in notation analogous to that introduced and used

throughout the thesis, with basic prior model

f(z) ≡ f(z; G) =

∫

k(z; θ)dG(θ), G ∼ DP(α, G0),

3



inference about the posterior expectation for the density function f is possible without

posterior realizations of the random mixing distribution G. In application, it does

sometimes appear that the Pólya urn (now the posterior predictive distribution for the

kernel parameters θ) is regarded as if it is the DP. Indeed, a popular view of the DP as

a clustering mechanism is rooted in the Pólya urn structure. And in certain cases, such

as for the now-standard robust modeling extension of having additive error specified

through a DP mixture, posterior predictive inference typically suffices. However, it

is inevitable that simply marginalizing over the random mixing measure, a parameter

which is essential to the model formulation, will limit possibilities for inference.

The earliest origin of this thesis lies in an investigation of what is lost by not

including G in the inferential scheme for a generic DP mixture model for multivariate

distributions. The discussion of Section 2.1 outlines why, in general, a reliance solely on

DP posterior predictive inference about a joint density for some set of random variables

precludes correct estimation of related conditional densities. In response to this, Chapter

2 defines a novel mean regression framework that relies upon truncated realizations of

the infinite dimensional G. The simple underlying idea is that full inference (i.e., dealing

with G) about multivariate random distributions assigned DP mixture priors allows for

any desired inference about related conditional distributions.

This simple insight serves as an introduction to the general modeling approach

of nonparametric analysis for conditional distributions through initial inference about

joint probability distributions. Chapter 3 contains three novel modeling frameworks that

fall within the general regression paradigm: quantile regression in Section 3.1, hidden
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Markov model switching regression in Section 3.2, and regression for survival data in

Section 3.3. In each case, flexible nonparametric modeling for joint distributions informs

the entire inference procedure, and regression modeling for related conditional densities

is born of this.

In Chapter 4, we turn to modeling for spatial Poisson point processes. The

modeling framework continues in the same spirit as that for regression, and indeed the

inference for marked processes in Section 4.1.2 is another example of analysis of condi-

tional distributions based on nonparametric modeling for a joint distribution. But the

conditional modeling for marks is only a part of the framework for Bayesian nonpara-

metric inference about Poisson point processes developed in this chapter. We describe

and specify, with illustration through data examples, modeling for both marked and un-

marked spatial Poisson processes and modeling for multiple related realizations of such

processes that are observed over discrete time intervals. This latter dynamic modeling

framework involves specification of a novel version of the Dependent Dirichlet Process

prior measure.

A characteristic of much of the work contained in this thesis is that inference

is required for the random mixing distributions (e.g., G in the simple model above).

Thus, all of the modeling frameworks are accompanied by a finite truncation for this

random distribution, so as to facilitate posterior sampling. The reason for sampling

G in the analysis of conditional distributions (either for regression response or point

process marks) has already been discussed. Furthermore, correctly estimated posterior

uncertainty intervals, whether around individual density function expectations or about
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a spatial region’s integrated Poisson intensity, are only available on the basis of posterior

sampling for the associated random mixing distributions. In addition, all inference for

models based on the temporally related random mixing measures developed in Chapter

4 requires posterior realizations of this set of measures. Sampling for truncated approx-

imations to G also provides the basis for alternative posterior simulation algorithms.

Forward-backward recursive sampling for the Markov switching regression model in Sec-

tion 3.2 and the particle filtering approach to sampling dynamic random measures in

Section 4.1.3 each rely upon truncated realizations for the random mixing distribution.

Also, the increased efficiency of such algorithms allows for nonparametric analysis of

relatively large data sets, such as the 35,000 crime events considered in Section 4.3.2.

Thus, although the model development is always fully nonparametric, almost

all of the practical implementation and inference relies upon finite truncations of the

infinite dimensional prior model. In one sense, we are presenting very flexible high

dimensional prior families which contain fully nonparametric models as limiting cases.

However, the work presented herein is more accurately characterized as the develop-

ment of nonparametric modeling frameworks accompanied by the truncation method-

ology and guidance required for practical implementation. As mentioned above, this

document should be viewed as a thesis on modeling. The primary goal throughout has

been to develop modeling frameworks that may serve as the basis for a wide variety of

inference, and my hope is that such inference will benefit distinctly from the proposed

methodology.
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Chapter 2

Bayesian Nonparametric Regression

Using Dirichlet Process Mixtures

This chapter introduces our general framework for the analysis of conditional

distributions through the example of a novel mean regression estimator. In the Bayesian

regression literature, two dominant trends have been to attempt to find increasingly

flexible regression function models and to accompany these models with more compre-

hensive uncertainty quantification. Typically, Bayesian nonparametric modeling focuses

on either the regression function or the error distribution. Müller and Quintana (2004)

provide an overview of the respective methodologies. The starting point for our ap-

proach is a novel Bayesian nonparametric extension of implied conditional regression,

wherein Dirichlet process mixtures (Ferguson, 1973; Antoniak, 1974) are used to model

the joint distribution of response and covariates, from which full inference is obtained

for the desired conditional distribution for response given covariates. Both the response
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distribution and, implicitly, the regression function are modeled nonparametrically, thus

providing a flexible framework for the general regression problem.

2.1 Multivariate Normal Mixture Model

We introduce in this section the DP mixture curve fitting approach to non-

parametric regression, beginning with a canonical Normal mixture model built around

the assumption of real-valued continuous response and covariates. The data, denoted

by D, consist of realizations of covariates X = (X1, ..., Xdx
) and response Y , occurring

according to some underlying random joint distribution, and interest lies in the condi-

tional distribution for Y given X. Although we refer throughout this chapter to the

case of a univariate response, there is no such restriction in the methodology. Indeed,

Section 3.3 includes an example of multivariate regression for survival data.

One possible approach for nonparametric regression is to estimate the joint and

marginal densities, f(x, y) and f(x), and then obtain inference from the conditional

density f(y | x) = f(x, y)/f(x). This implied conditional regression approach dates

back at least to Nadaraya (1964) and Watson (1964), where estimation was based on

kernel smoothing methods. In the machine learning literature, members of the general

class of such techniques are referred to as generative estimation methods (see Bishop

and Lasserre, 2007, for discussion in the context of classification). An attractive im-

plementation arises from the use of Bayesian nonparametric density estimation. We

use DP mixtures of multivariate normal distributions to model the joint distribution of

8



the response and covariates (as in, e.g., Müller et al., 1996). The multivariate normal

distribution is a natural choice for the mixture kernel in the presence of (real-valued) con-

tinuous variables, due to both its flexibility and the relative ease of application. Finite

mixtures of multivariate normals have proven successful in many problems where the

number of mixture components is assumed to be known, as well as in situations where it

is estimated from the data (see, e.g., Lopes et al., 2003; Dellaportas and Papageorgiou,

2006). These models can be extended by placing a DP prior on the random mixing

measure for the multivariate normal kernels, an approach that yields both methodolog-

ical and practical advantages, due to a more general modeling framework and posterior

simulation techniques that are typically less complex than for finite mixture models

with an unknown number of components.

The DP was developed by Ferguson (1973) as a prior probability model for

random distributions (equivalently, distribution functions) G. DP models have enjoyed

considerable popularity due to the ready availability of posterior simulation techniques,

the analytic tractability of almost surely discreet realized probability functions, as well

as the theoretical elegance of the model formulations. A DP(α, G0) prior for G is

defined in terms of two parameters, a parametric base distribution G0 (the mean of

the process) and a positive scalar parameter α, which can be interpreted as a precision

parameter; larger values of α result in realizations G that are closer to G0. We will

write G ∼ DP(α, G0) to indicate that a DP prior is used for the random distribution

G. In fact, DP-based modeling typically utilizes mixtures of DPs (Antoniak, 1974),

i.e., a more general version of the DP prior that involves hyperpriors for α and/or the

9



parameters of G0. The most commonly used DP definition is its constructive definition

(Sethuraman, 1994), which characterizes DP realizations as countable mixtures of point

masses (and thus as random discrete distributions). Specifically, a random distribution

G generated from DP(α, G0) is (almost surely) of the form

G(·) =
∞

∑

`=1

p` δϑ`
(·) (2.1)

where δϑ(·) denotes a point mass at ϑ. The locations of the point masses, ϑ`, are

i.i.d. realizations from G0; the corresponding weights, p`, arise from a stick-breaking

mechanism based on i.i.d. draws {vk : k = 1, 2, ...} from a Be(1, α) distribution (Here,

β(a, b) denotes the Beta distribution with mean a/(a + b)). In particular, p1 = v1, and,

for each ` = 2, 3, ..., p` = v`
∏`−1

k=1(1 − vk). Moreover, the sequences {ϑ`, ` = 1, 2, . . .}

and {vk : k = 1, 2, ...} are independent.

In the d = dx + 1 dimensional setting, with data D = {zi = (x1
i ,. . . , xdx

i , yi):

i = 1, . . . , n}, the location-scale normal DP mixture model can be described as follows:

zi | G
ind∼ f(zi; G) =

∫

N(zi; µ,Σ)dG(µ,Σ), G | α, ψ ∼ DP (α, G0(ψ)) , (2.2)

with the DP centering distribution given by G0(µ,Σ; ψ) = N(µ; m, V )Wν(Σ
−1; S−1),

where ψ = (m, V, S), and Wv(·; M) denotes the Wishart distribution with v degrees of

freedom and expectation vM . We place hyperpriors on ψ and the DP precision param-

eter α. In particular, we take π(ψ) = N (m; am, Bm) WaV
(V −1; B−1

V ) WaS
(S; BS) and

π(α) = Ga(α; aα, bα), where Ga(a, b) denotes the gamma distribution with expectation

a/b. The values for hyperparameters of ψ are usually chosen only to scale the mixture

to the data, and prior specification is discussed in Section 2.2 below.

10



This mixture specification provides also the prior model for the marginal den-

sity for X, f(x; G) =
∫

N(x; µx, Σxx)dG(µ,Σ), after the mean vector and covariance

matrix of the normal kernel have been partitioned. In particular, µ comprises (dx × 1)

vector µx and scalar µy, and Σ is a square block matrix with diagonal elements given by

(dx×dx) covariance matrix Σxx and scalar variance Σyy, and above and below diagonal

vectors Σxy, and Σyx, respectively.

A set of latent parameters θ = {θi = (µi, Σi) : i = 1, . . . , n} are introduced to

break the mixture in model (2.2) such that

zi|µi, Σi
ind∼ NL+1(zi; µi, Σi), i = 1, ..., n

(µi, Σi)|G iid∼ G, i = 1, ..., n

G | α, ψ ∼ DP(α, G0(ψ)).

(2.3)

Most typically, DP mixture models are fit by marginalizing the random mixing distribu-

tion G over its DP prior and using the resulting Pólya urn representation for the latent

mixing parameters θ (Blackwell and MacQueen, 1973) in sampling from the posterior.

Without posterior realizations of G, inference for the densities f(x, y; G) and f(x; G)

is available only in the form of point estimates through the posterior predictive density

for x and y, P0(x, y | D), which can be estimated using only the posterior distribution

Pr(θ, α, ψ | D) for {θ, α, ψ}. Specifically,

P0(x, y | D) =

∫

P0(x, y | θ, α, ψ)d Pr(θ, α, ψ | D), (2.4)

where the predictive density conditional on model parameters has a convenient Pólya
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urn structure,

P0(x, y | θ, α, ψ) =
α

α + n

∫

N(x, y; θ0)dG0(θ0; ψ) +
n?
∑

j=1

H?
j

α + n
N(x, y; θ?

j ). (2.5)

Here, θ0 = (µ0, Σ0), θ? = {θ?
j = (µ?

j , Σ
?
j ) : j = 1, . . . , n?} is the set of n? distinct

parameter values in θ, and H?
j is the number of data observations allocated to unique

component θ?
j .

Müller et al. (1996) developed a DP mixture implied conditional regression

method based on multivariate normal mixtures as in model (2.2). However, their curve

fitting approach relies on a point estimate for the conditional density,

∫

P0(x, y | θ, α, ψ)

P0(x | θ, α, ψ)
d Pr(θ, α, ψ | D), (2.6)

which is not E [f(y | x; G) | D]. That is, (2.6) is not the posterior expectation for

the random conditional density f(y | x; G) = f(x, y; G)/f(x; G), which would be the

natural point estimate for the regression function at any specified combination of values

(x, y). Note that P0(x, y | θ, α, ψ) in (2.5) arises from

∫

N(x, y; θ0)

[∫

dG(θ0)dF(G | α?, G?
0)

]

=

∫ [∫

N(x, y; θ0)dG(θ0)

]

dF(G | α?, G?
0)

= E [f(x, y; G) | θ, α, ψ] , (2.7)

where, in general, F(G | α, G0) denotes the distribution over random distribution func-

tions G implied by a DP(α, G0). Here, the precision parameter α̃ = α+n, and the cen-

tering distribution G̃0(·) ≡ G̃0(· | θ, α, ψ) = (α + n)−1 [αdG0(·; ψ) +
∑n

i=1 δθi
(·)], where

δu denotes a point mass at u (Antoniak, 1974). Therefore, we also have P0(x | D) =

E [f(x; G) | D], and thus joint and marginal posterior predictive densities P0(x, y | D)

12



and P0(x | D) provide point estimates (posterior expectations) for f(x, y; G) and

f(x; G), respectively. Hence, the regression estimator proposed by Müller et al. (1996),

based on (2.6), as well as that proposed in the more recent work of Rodriguez et al.

(2008), based upon P0(x, y | D) / P0(x | D), are approximating the expectation of a

ratio with a ratio of expectations.

Indeed, through calculations similar to that of (2.7), it will be true in general

that the marginal posterior predictive density estimate will lead to incorrect estimation

if used as a basis for conditional inference. Any inference for functionals of a conditional

density estimate based on (2.6) ( or even based on the true posterior predictive condi-

tional density ) cannot be formally related to the posterior expectation of the random

conditional distribution. Evidently, there is much to be gained from taking the extra

step to obtain the posterior distribution of G. Primarily, this allows for direct draws

from the posterior of the conditional density f(y | x; G), which will provide the ex-

act point estimate E [f(y | x; G) | D] and, most importantly, quantification of posterior

uncertainty about the implied conditional density.

Posterior sampling for the infinite dimensional parameter G is possible through

the constructive definition in (2.1), wherein a realization G from the DP(α, G0(ψ)) is

almost surely a discrete distribution with a countable number of possible values drawn

i.i.d. from G0(ψ), and corresponding weights that are built from i.i.d. Be(1, α) variables

through stick-breaking. Hence, a truncation approximation to G can be defined as

13



follows,

GL(·) =
L

∑

l=1

plδϑl
(·) with p, ϑ ∼ PL(p | 1, α)

L
∏

l=1

dG0(ϑl; ψ), (2.8)

where p = (p1, . . . , pL), ϑ = (ϑ1, . . . , ϑL), and the finite stick-breaking prior PL(p

| a, b) is defined constructively by

v1, . . . , vL−1
iid∼ Be(a, b), vL = 1; (2.9)

p1 = v1, and for l = 2, . . . , L : pl = vl

l−1
∏

s=1

(1 − vs),

(see, e.g., Ishwaran and James, 2001).

The truncated distribution GL may be used only for the conditional posterior

of G given {θ, α, ψ} after the Pólya urn marginalization, in which case, GL is a trun-

cation approximation to a DP with parameters α̃ and G̃0 given above. Alternatively,

one can utilize the truncated DP, defined by (2.8) and (2.10), throughout and draw

parameters conditional on this truncation (as in the Blocked Gibbs posterior simulation

method of Section 3.2.3). In either case, given a posterior draw of the truncated DP

parameters, GL = {(pl, (µl, Σl)) : l = 1, ..., L}, posterior realizations for the joint and

marginal densities are readily available through f(x, y; GL) =
∑L

l=1 plN(x, y; µl, Σl) and

f(x; GL) =
∑L

l=1 plN(x; µx
l , Σxx

l ). Then, the posterior realization for the conditional

response density at any value (x, y) is given by

f(y | x; GL) =
f(x, y; GL)

f(x; GL)
=

∑L
l=1 plN(x, y; µl, Σl)

∑L
l=1 plN(x; µx

l , Σxx
l )

. (2.10)

It is thus possible to obtain the posterior of the conditional density for response given

covariates over a grid in x and y, which yields full inference for the implied conditional
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regression relationship, for example, through posterior point and interval estimates.

Under the modeling framework defined by (2.2) and (2.3), the discreteness of

G, induced by its DP prior, is a key feature as it enables flexible shapes for the joint

distribution of the response and covariates through data-driven clustering of the mixing

parameters (µi, Σi). Note, however, that we employ the DP mixture setting to model

random distributions (as it was originally intended) and not as a clustering mechanism

(as used, to some extent, in the more recent literature). In this regard, although it may

be of methodological interest to study some of the recent extensions of the DP (e.g.

Ishwaran and James, 2001; Lijoi et al., 2005) as alternative priors for G, these prior

models would, arguably, not lead to practical advantages over the DP with regard to

the resulting inference.

We note that the structure of conditional moments for the normal mixture

kernel enables posterior sampling of the conditional mean regression function without

having to compute the conditional density. Specifically,

E
[

Y | x; GL
]

=
1

f(x; GL)

L
∑

l=1

pl

∫

yN (y,x; µl, Σl) dy (2.11)

=
1

f(x; GL)

L
∑

l=1

plN(x; µx
l , Σxx

l )
[

µy
l + Σyx

l (Σxx
l )−1(x − µx

l )
]

,

which, evaluated over a grid in x, yields posterior realizations of the conditional mean

function. Thus, we have an unbiased version of the regression estimator first proposed by

Müller et al. (1996). Since it is the inverse covariance Σ−1
l that is drawn during MCMC, a

rapid implementation of the above mean regression is facilitated by noting that Σ−1
l has

diagonal elements A = Σxx−1+Σxx−1ΣxyEΣxyΣxx−1 and E = (Σyy−ΣyxΣxx−1Σxy)−1,
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with above diagonal B = −Σxx−1ΣxyE and B′ below, such that ΣxyΣxx−1 = −E−1B′

and Σxx−1 = A − BE−1B′.

Note that Rodriguez et al. (2008) (details contained in Rodriguez, 2007) proved

posterior consistency for the conditional density estimator P0(x, y | D) / P0(x | D), with

P0( · |D) the posterior predictive density of (2.4), which is the true posterior predictive

conditional density. As a corollary, they show consistency for the associated mean

regression estimators. This would indicate that, as the sample size tends to infinity,

point estimators based on either the true posterior predictive conditional density or the

Müller et al. (1996) approach will converge to the expectation of conditional density

and mean regression functions sampled from their full posterior as in (2.10) and (2.11)

respectively. This, however, does not change the fact that neither posterior predictive

conditional density estimator represents the posterior expectation of the conditional

density for finite sample sizes and that it is impossible to accurately account for posterior

uncertainty about these point estimates without sampling GL.

A simple illustration of this mean regression estimator is shown in Figure 2.1,

where the DP mixture of normals model with the default prior specification of Section

2.2 is fit to a simple nonlinear function with additive normal noise. Further use of the

estimator is illustrated in Section 3.2.5 in the context of switching regression. However,

through posterior sampling of the truncated GL, a wide range of inference about the

conditional distribution is possible, and modeling throughout the remainder of this

thesis is proposed in the spirit of taking full advantage of this complete inference. In

Section 3.1, we describe a quantile regression framework which arises naturally from the
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DP implied regression modeling approach, and in Section 3.2 the complete GL measures

are used to estimate hidden Markov model states. Before this, however, the following

sections describe prior specification and a first approach to posterior simulation.
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Figure 2.1: Posterior mean (solid line) and 90% interval (dashed lines) for the mean
regression estimate E[h|x; G], where h(x) = 0.4x + 0.5 sin(2.7x) + 1.1(1 + x2)−1 +
N(0, .25) (from Neal, 1997). The 200 covariate locations were drawn from a standard
normal.

2.2 Prior Specification

Here, we discuss the choice of hyperpriors for the DP mixture model of Sec-

tion 2.1. The general approach to hyperprior specification for DP mixture models is

influenced by a guiding principle holding that the base measure for kernel parameters

should be appropriate for a simplified model with a single kernel serving as the density

for all observations. This approach ensures that the hyperprior is appropriately diffuse
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and is scaled to the data, while requiring only a small amount of prior information. In

particular, only rough prior guesses at the center of the response and covariate vari-

ables, say, ey and exj
, j = 1, ..., dx, as well as at their corresponding ranges, say, ry and

rxj
, j = 1, ..., dx. Let e = (ey, ex1

, ..., exdx
) and denote by R the (dx + 1) × (dx + 1)

diagonal matrix with diagonal elements (ry/4)2 and (rxj
/4)2, j = 1, ..., dx, which are

prior estimates for the variability of the response and covariates. For a default specifi-

cation we consider a single component in the mixture, Ndx+1(· ; µ,Σ), i.e., the limiting

case of model (2.3) with α → 0+. Therefore, we effectively seek to roughly center and

scale the mixture model, using prior information that identifies the subset of R
dx+1

where the data are expected to be supported. Next, based on the form of G0 and the

hyperpriors for its parameters ψ, we can obtain marginal prior moments for µ, i.e.,

E(µ) = am, and Cov(µ) = (aV − dx − 2)−1BV + Bm, which are matched with e and R.

Specifically, we take am = e, and, using a variance inflation factor of 2, set Bm = R

and (aV − dx − 2)−1BV = R. We use R to specify also the prior for S through R =

E(Σ) = (ν − dx − 2)−1aSBS . Finally, ν, aV , and aS are chosen to scale appropriately

the hyperpriors, e.g., note that smaller values of (ν − dx − 2)−1aS yield more dispersed

priors for S, and that aV = dx + 3 is the (integer) value that yields the largest possible

dispersion while ensuring finite prior expectation for V . For the data analysis presented

in Section 3.1.2, we used ν = aV = aS = 2(dx + 2); we have also empirically observed

this choice to work well for other data sets that we have studied with model (2.3).

Regarding the prior choice for the DP precision α, guidelines are available

based on the role this parameter plays with regard to the number of distinct components
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in the DP mixture model. Note that, marginalizing G over its DP prior, the second

and third stages of model (2.3) collapse into a joint prior distribution for the mixing

parameters θ = {(µi, Σi) : i = 1, ..., n}, which arises according to a particular Pólya urn

scheme. Specifically, as shown by Blackwell and MacQueen (1973), conditional on the

DP hyperparameters,

p(θ | α, ψ) = g0(µ1, Σ1; ψ)
n

∏

i=2

{

α

α + i − 1
g0(µi, Σi; ψ) +

1

α + i − 1

i−1
∑

`=1

δ(µ`,Σ`)(µi, Σi)

}

(2.12)

where g0 is the density of G0. This expression indicates the DP-induced clustering of

the mixing parameters. In particular, θ is partitioned into n∗(≤ n) distinct components,

where the prior distribution for n∗ is controlled by α (see Antoniak, 1974; Escobar and

West, 1995, for example). In practice, larger values of α yield higher prior probabilities

for larger n∗. For instance, under a Ga(aα, bα) prior for α (with mean aα/bα), a useful

approximation, for moderately large n, to the prior expectation for n∗ is given by

(aα/bα) log{1 + (nbα/aα)}.

2.3 Incorporating Categorical Covariates

Here, we briefly discuss possible extensions of the modeling framework of Sec-

tion 2.1 to incorporate both continuous covariates, xc, and categorical covariates, xd,

where x = (xc,xd). Section 3.1.4 introduces in detail one such model in the context of

quantile regression, accompanied by discussion of posterior simulation methodology. In

addition, the data example of Section 3.3.2 involves regression for survival data with
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bivariate response in the presence of a single binary covariate.

A natural extension of the DP mixture model in (2.2) and (2.3) involves replac-

ing the multivariate normal distribution with a mixed continuous/discrete specification

for the mixture kernel k(y,xc,xd; θ). One possible specification emerges from indepen-

dent components for (y,xc) and xd. The former can be a multivariate normal distri-

bution, as in Section 2.1, and the latter would be assigned an appropriate multivariate

discrete distribution. In its simplest form, this discrete distribution would comprise in-

dependent components for the individual elements of xd. More generally, k(y,xc,xd; θ)

can be built from a conditional distribution for either the categorical or continuous part

given the other variables. Dropping the kernel parameters from the notation, in the for-

mer case, k(y,xc,xd) = Pr(xd | y,xc)k(y,xc), where, for example, with a single binary

covariate xd, a (linear) logistic form could be used for Pr(xd = 1 | y,xc). The latter

setting will perhaps be more appropriate given the direction of conditioning involving

the response variable. In this case, we could have k(y,xc,xd) = k(y,xc | xd) Pr(xd), and

use a multivariate normal density for k(y,xc | xd) with parameters that are functions

of xd. A simpler formulation would be k(y,xc,xd) = k(y | xc,xd)k(xc) Pr(xd), using,

say, a normal density for k(y | xc,xd) with mean that is a function of xc and xd.

2.4 Posterior Simulation

We describe here an approach to MCMC sampling from the posterior of model

(2.3) with G marginalized over its DP prior. As discussed in Section 2.1, this marginal-
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ization yields a model with a finite-dimensional parameter vector consisting of the mix-

ing parameters θ = {(µi, Σi) : i = 1, ..., n} and the DP hyperparameters α and ψ. An

alternative “blocked Gibbs” method for posterior simulation involves direct approxi-

mation of G in model (2.3), using the constructive definition of its DP(α, G0) prior,

and then application of an MCMC technique for the induced discrete mixture model

(see, e.g. Ishwaran and James, 2001). Although this alternative approach is preferable

in many situations, we focus now on the more common Pólya urn methodology and

save the blocked Gibbs for Section 3.2.3, where it will be introduced in the context of

switching regression.

We update each (µi, Σi) using algorithm 5 from Neal (2000), which is based

on Metropolis-Hastings steps with proposal distribution given by the prior full condi-

tional of (µi, Σi) implied by (2.12). Updating all the (µi, Σi), i = 1, ..., n, generates a

posterior realization for the partition of θ comprising n? distinct components (µ?
j , Σ

?
j ),

j = 1, ..., n?. The (µ?
j , Σ

?
j ), along with configuration indicators k = (k1, ..., kn) de-

fined such that ki = j if and only if (µi, Σi) = (µ?
j , Σ

?
j ), determine θ. Hence, an

equivalent representation for θ is given by (n?, {(µ?
j , Σ

?
j ) : j = 1, ..., n?},k). The

Metropolis-Hastings approach to update the (µi, Σi) can potentially lead to poor mix-

ing. However, it is straightforward to implement and, combined with the technique

from Bush and MacEachern (1996) to resample the (µ?
j , Σ

?
j ), yields an efficient MCMC

method. For each j = 1, ..., n?, the posterior full conditional for (µ?
j , Σ

?
j ) is propor-

tional to g0(µ
?
j , Σ

?
j ; ψ)

∏

{i:ki=j} Ndx+1(zi; µ
?
j , Σ

?
j ), and is sampled by drawing from the

full conditionals for µ?
j and Σ?

j . The former is (dx +1)-variate normal with mean vector
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(V −1 +n?
jΣ

?−1
j )−1(V −1m+Σ?−1

j

∑

{i:ki=j} zi) and covariance matrix (V −1 +n?
jΣ

?−1
j )−1,

where n?
j = |{i : ki = j}|. The latter is inverse Wishart with scalar parameter ν + n?

j

and matrix parameter S +
∑

{i:ki=j}(zi − µ?
j )(zi − µ?

j )
′.

Regarding the DP hyperparameters, we update α using the auxiliary vari-

able method from Escobar and West (1995). The posterior full conditional for m is

(dx + 1)-variate normal with mean vector (B−1
m + n?V −1)−1(B−1

m am + V −1
∑n?

j=1 µ?
j )

and covariance matrix (B−1
m + n?V −1)−1. The full conditional for V is inverse Wishart

with scalar parameter aV +n? and matrix parameter BV +
∑n?

j=1(µ
?
j −m)(µ?

j −m)′. Fi-

nally, the full conditional for S is given by a Wishart distribution with scalar parameter

aS + νn? and matrix parameter (B−1
S +

∑n?

j=1 Σ?−1
j )−1.

Next, note that, based on Antoniak (1974), the full posterior of model (2.3) is

given by

p(G, θ, α, ψ|data) = p(G|θ, α, ψ)p(θ, α, ψ|data). (2.13)

Here, the distribution for G|θ, α, ψ corresponds to a DP with precision parameter α+n

and mean G̃0(· ; θ, α, ψ), which is a mixed distribution with point masses n?
j (α + n)−1

at (µ?
j , Σ

?
j ), j = 1, ..., n?, and continuous mass α(α + n)−1 on G0(ψ).

Hence, we can draw from the full posterior in (2.13) by augmenting each pos-

terior sample from p(θ, α, ψ|data) with a draw from p(G|θ, α, ψ). The latter requires

simulation from the DP with parameters given above, which we implement using the

DP constructive definition (discussed in Section 2.1) with a truncation approximation

(Gelfand and Kottas, 2002; Kottas, 2006). Therefore, this approach yields realiza-

tions of {GL, θ, α, ψ} from the full posterior (2.13). Each posterior realization GL is
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a discrete distribution with point masses at ϑl = (µl, Σl), l = 1, ..., L, drawn i.i.d.

from G̃0(· ; θ, α, ψ), and corresponding weights pl, l = 1, ..., L, generated using the

stick-breaking construction based on i.i.d. Be(1, α) draws, and normalized so that

∑L
l=1 pl = 1. Here, L is the number of terms used in the truncation series approxi-

mation to the countable series representation for the DP. In general, L may depend on

the particular posterior realization, and the approximation can be specified up to any

desired accuracy (see Kottas, 2006, for a specific rule to choose L).

For any specific combination of response and covariate values, say, (y0, x0),

f(y0,x0; G
L) =

∫

Ndx+1(y0,x0; µ,Σ)dGL(µ,Σ)

=
L

∑

l=1

plNdx+1(y0,x0; µl, Σl)

is a realization from the posterior of the random mixture density f(y,x; GL) in (2.2) at

point (y,x) = (y0, x0). Analogously, we can obtain the draw from the posterior of the

marginal density f(x; GL) at point x = x0 by computing f(x0; G
L) =

∫

Ndx
( x0; µx,

Σxx) dGL(µ,Σ). Thus, we obtain f(y0 | x0; G
L) = f(y0,x0; G

L) / f(x0; G
L), which is a

realization from the posterior of the conditional density f(y | x; GL), at point (y,x) =

(y0,x0).
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Chapter 3

Novel Nonparametric Inference for

Regression

This chapter contains three new nonparametric regression frameworks, each

taking advantage of full inference about a joint density function, through posterior

sampling of truncated random distributions, as a basis for inference about related con-

ditional probability density functions and functionals thereof. Section 3.1 expands on

the models proposed in Chapter 2 and develops a comprehensive approach to quantile

regression. The methodology is introduced with reference to the canonical model of

DP mixtures of multivariate normal distributions, before turning to an example which

incorporates categorical covariates and censored response. Data examples are provided

in Sections 3.1.2 and 3.1.4. Section 3.2 introduces a nonparametric approach to switch-

ing regression wherein a DP mixture model for the joint distribution of covariates and

response provides the basis of inference about both the state regression functions and
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the hidden Markov model underlying state membership. As part of this framework, we

develop in Section 3.2.4 a semiparametric model that can be used to link, through the

hidden Markov model, nonparametric analysis with parametric inference about external

covariates. The motivating data example is provided in Section 3.2.5. Finally, Section

3.3 applies our nonparametric analysis of conditional distributions to survival data and

introduces, in this context, the modeling extension to multivariate regression.

3.1 A Model-Based Approach to Quantile Regression

Quantile regression can be used to quantify the relationship between quantiles

of the response distribution and available covariates. It offers a practically important

alternative to traditional mean regression, since, in general, a set of quantiles provides

a more complete description of the response distribution than the mean. In many

regression examples (e.g., in econometrics, educational studies, and environmental ap-

plications), we might expect a different structural relationship for the higher (or lower)

responses than the average responses. In such applications, mean, or median, regression

approaches would likely overlook important features that could be uncovered by a more

general quantile regression analysis.

There is a fairly extensive literature on classical estimation for the standard p-

th quantile regression model, yi = xT
i β + εi, where yi denotes the response observations,

xi the corresponding covariate vectors, and εi the errors, which are typically assumed

independent from a distribution (with density, say, fp(·)) that has p-th quantile equal to
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0 (see, e.g., Koenker, 2005). This literature is dominated by semiparametric techniques

where the error density fp(·) is left unspecified (apart from the restriction
∫ 0
−∞ fp(ε)dε =

p). Hence, since there is no probability model for the response distribution, point

estimation for β proceeds by optimization of some loss function. For instance, under

the standard setting with independent and uncensored responses, the point estimates for

β minimize
∑

ρp(yi − xT
i β), where ρp(u) = up − u1(−∞,0)(u); this form yields the least

absolute deviations criterion for p = 0.5, i.e., for the special case of median regression.

Any inference beyond point estimation is based on asymptotic arguments or resampling

methods. The classical literature includes also work that relaxes the parametric (linear)

regression form for the quantile regression function (see, e.g. He et al., 1998; Horowitz

and Lee, 2005).

By comparison with the existing volume of classical work, the Bayesian liter-

ature on quantile regression is relatively limited. The special case of median regression

has been considered in Walker and Mallick (1999), Kottas and Gelfand (2001), and

Hanson and Johnson (2002). This work is based on a parametric form for the me-

dian regression function and nonparametric modeling for the error distribution, using

either Pólya tree or Dirichlet process (DP) priors. (see, e.g. Müller and Quintana, 2004;

Hanson et al., 2005, for reviews of these nonparametric prior models.) Regarding quan-

tile regression, Yu and Moyeed (2001) and Tsionas (2003) discuss parametric inference

based on linear regression functions and the asymmetric Laplace distribution for the

errors; Kottas and Krnjajić (2008) develop Bayesian semiparametric models using DP

mixtures for the error distribution; and Hjort and Petrone (2005) study nonparametric
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inference for the quantile function based on DP priors, including brief discussion of the

semiparametric extension to quantile regression. Moreover, Chamberlain and Imbens

(2003) and Dunson and Taylor (2005) propose semi-Bayesian inference methods for lin-

ear quantile regression, which, in contrast to the work discussed above, do not involve

probabilistic modeling for the response distribution.

A practical limitation of the Bayesian semiparametric modeling approaches de-

veloped in Walker and Mallick (1999), Kottas and Gelfand (2001), Hanson and Johnson

(2002), and Kottas and Krnjajić (2008) is that, although they provide flexible shapes for

the error distribution, they are based on parametric (in fact, linear) quantile regression

functions. Regarding inference for non-linear quantile regression functions, Scaccia and

Green (2003) model the conditional distribution of the response given a single continuous

covariate with a discrete normal mixture with covariate-dependent weights. Moreover,

Yu (2002) discusses a semi-Bayesian estimation method based on a piecewise polynomial

representation for the quantile regression function corresponding, again, to a single con-

tinuous covariate, but without a probability model for the error distribution. We note

that both of these approaches involve relatively complex Markov chain Monte Carlo

(MCMC) methods for inference (specifically, certain forms of reversible jump MCMC

techniques); moreover, their extension to handle problems with more than one covariate

appears to be non-trivial.

The quantile regression approach proposed here is founded on Bayesian prob-

abilistic modeling for the underlying unknown (random) distributions. The joint dis-

tribution of the response and the covariates is modeled with a flexible nonparametric
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mixture, as outlined in Section 2.1, and we develop inference for different quantile curves

based on the induced conditional distribution of the response given the covariates. To

our knowledge, this presents the first attempt to develop a model-based, fully inferential

framework for Bayesian nonparametric quantile regression. The methodology enables

exact and full inference for any quantile regression function that may be of interest.

3.1.1 Posterior Inference Framework

We describe here the approach to estimate quantile curves based on the poste-

rior for the conditional response density f(y|x; G) implied by DP mixture model (2.2).

Through use of the procedures of Section 2.4, it is possible to obtain an approx-

imate realization of f(y0 | x0; G) = f(y0,x0; G)/f(x0; G) at any point (y,x) = (y0,x0).

Repeating over a grid in y, that covers the range of response values of interest, we ob-

tain a posterior realization from the random conditional density function f(· | x0; G) for

the specific covariate values x0. Note that this is a posterior realization for the entire

function, obtained, of course, up to the grid approximation. Now, for any 0 < p < 1,

the conditional quantile qp(x0) ≡ qp(x0; G) satisfies
∫ qp(x0)

f(y | x0; G) dy = p. Hence,

using numerical integration (with interpolation) of the posterior realizations from the

conditional density f(· | x0; G), yields draws from the posterior of qp(x0) for any set of

percentiles that might be of interest.

Therefore, for any x0, and for any 0 < p < 1, we obtain samples from

p(qp(x0) | D) that can be used to summarize the information from these conditional

quantiles in any desired form. In particular, for any set of p values, working with a grid
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over the covariate space, we can compute point and interval estimates for the corre-

sponding quantile curves qp(·; G). Evidently, graphical depiction of these estimates for

the entire curve is not feasible for problems with more than two covariates. As shown in

Section 3.1.2, for such applications, one can focus on illustrations involving the quantile

regression function given subsets of the covariate vector including specific choices of one

or two covariates.

Because of the need to obtain the posterior of f(· | x0; G) over a sufficiently

dense grid of x0 values, implementation of inference becomes computationally intensive

for high-dimensional covariate spaces. However, if interest focuses on the posterior of

conditional response densities f(y | x0; G) (e.g., Figure 3.3), or corresponding condi-

tional quantiles, for a small number of specified x0 values, the approach is feasible in

higher dimensions. Moreover, as discussed above, for inference on conditional quantile

regression functions for a small subset of the covariates (e.g., Figures 3.1 and 3.2), the

input grid is over a lower dimensional space and the computational expense is reduced.

Regardless, the proposed approach to inference for quantile regression is well-suited for

problems with small to moderate number of covariates, and there is indeed a wide va-

riety of such regression problems that are of interest in, for example, economics and

public health research. For such settings, the methodology is very flexible as it allows

both non-linear quantile curves as well as non-standard shapes for the conditional dis-

tribution of the response given the covariates. Moreover, the model does not rely on the

additive nonparametric regression formulation and therefore can uncover interactions

between covariates that might influence certain quantile regression curves. Finally, a key
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feature of the approach is that it enables simultaneous inference for any set of quantile

curves of interest in a particular application.

3.1.2 Moral Hazard Data Example

To illustrate this quantile regression methodology, we consider data used by

Yafeh and Yoshua (2003) to investigate the relationship between shareholder concen-

tration and several indices for managerial moral hazard in the form of expenditure with

scope for private benefit. The data set includes a variety of variables describing 185

Japanese industrial chemical firms listed on the Tokyo stock exchange. (The data set

is available online through the Economic Journal at http://www.res.org.uk.) A subset

of these data was also considered by Horowitz and Lee (2005) in application of their

classical nonparametric estimation technique for an additive quantile regression model.

As was done there, we consider a single model proposed by Yafeh and Yoshua (2003) in

which index MH5, consisting of general sales and administrative expenses deflated by

sales, is the response y related to a four-dimensional covariate vector x, which includes

Leverage (ratio of debt to total assets), log(Assets), the Age of the firm, and TOPTEN,

the percent of ownership held by the ten largest shareholders. The response and all four

covariates are continuous and, although Leverage and TOPTEN occur over subsets of

the real line, the data lies far enough from support boundaries to render the multivariate

normal distribution a suitable choice for the kernel of the DP mixture model in (2.2).

The model is implemented using the prior specification approach outlined in

Section 2.2. In the absence of genuine prior information in our illustrative analysis,
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we take values from the data for the prior guesses of the center and range for the re-

sponse and four covariates. Results were insensitive to reasonable changes in the prior

specification, e.g., doubling the observed data range for the response and covariates did

not affect the posterior estimates in Figures 3.1 – 3.3. A Ga(1, 0.2) prior is placed on

the DP precision parameter α, implying E(n?) ≈ 18. Experimentation with alternative

gamma priors, yielding smaller prior estimates for the number of distinct mixture com-

ponents, has resulted in essentially identical posterior inference. Results are based on an

MCMC sample of 150,000 parameter draws recorded on every tenth iteration following

a (conservative) burn-in of 50,000 iterations.

Although it is not possible to show the response quantile functions over all four

variables, as discussed in Section 3.1.1, it is straightforward to obtain quantile curves for

the response given any one-dimensional or two-dimensional subset of the covariates. In

Figure 3.1, we plot posterior point and 90% interval estimates for the response median

and 90-th percentile as a function of each individual covariate. In addition, Figure

3.2 provides inference for the response median and 90-th percentile surfaces over the

two-dimensional covariate space defined by Leverage and TOPTEN. (Note that Yafeh

and Yoshua, 2003, found these two covariates to be the most significant.) In particular,

shown are point estimates, through the posterior mean, and a measure of the related

uncertainty, through the posterior interquartile range.

These two figures indicate the capacity of the model to capture non-linear

shapes in the estimated quantile curves as well as to quantify the associated uncer-

tainty. Figure 3.1 shows that the marginal relationship between each covariate and
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Figure 3.1: Moral hazard data. Posterior estimates for median regression (left column)
and 90-th percentile regression (right column) for MH5 conditional on each individual
covariate. The solid lines are posterior mean estimates and dashed lines contain a 90%
posterior interval. Data scatterplots are shown in grey.
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Figure 3.3: Moral hazard data. Posterior mean estimates (solid lines) and 90% interval
estimates (dashed lines) for four conditional densities f(y | x0; G) (see Section 4 for the
values of x0).
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MH5 may differ significantly depending upon the quantile of interest; this is particularly

clear in the contrast between median and 90th percentile curves for MH5 conditional

on TOPTEN. The inference results displayed in Figure 3.2 show an interaction between

the effects of Leverage and TOPTEN in both the median and 90th percentile functions,

suggesting that it is useful to relax the assumption of additivity over the covariate

space (which forms the basis of the method in Horowitz and Lee, 2005). The same

picture shows that posterior uncertainty about the quantile functions is highly variable

throughout the covariate space; for each quantile, regions of steep change in the quantile

function correspond to significantly higher uncertainty around the function estimate. In

addition, it is interesting to note that all of the figures show a monotonically decreasing

MH5 90th percentile and median with respect to Leverage, but that these quantiles do

not appear to be strictly decreasing with respect to increases in TOPTEN . In particu-

lar, for TOPTEN less than 50, our findings do not support the hypothesis of Yafeh and

Yoshua (i.e., that increased shareholder concentration leads to lower managerial moral

hazard). However, the MH5 quantiles do seem to be monotonically decreasing with

TOPTEN greater than 50, indicating perhaps that the relationship hypothesized by

Yafeh and Yoshua only manifests itself after a small group of shareholders has amassed

a significant stake in the firm.

Figure 3.3 illustrates inference for the conditional response density f(y | x0; G).

Included are results for four values, x0, of the covariate vector x = (TOPTEN, Leverage,

Age, log(Assets)). Specifically, clockwise from top left, the plots correspond to x0 =

(40, 0.3, 55, 11), (35, 0.6, 55, 11), (40, 0.3, 70, 13), and (70, 0.8, 55, 11). This type of infer-
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Figure 3.4: Moral hazard data. Histogram of the posterior mean for the cumulative
distribution function evaluated at the data: {E [F (y1|x1; G)|D] , . . . , E [F (yn|xn; G)|D]}.
The number of observations allocated to each bin is shown on the vertical axis.

ence highlights the ability of the model to capture non-standard distributional features

such as heavy tails, skewness, and multimodality. The posterior estimates in Figure

3.3 clearly indicate that the response distribution changes significantly throughout the

covariate space in ways that can not be modeled with standard parametric forms. In-

spection of the data scatterplots in Figure 3.1 makes it clear that the non-standard

features captured in the posterior estimates from the DP mixture model are driven by

the data and are not simply an artifact of the flexible nonparametric prior mixture

model.

It is also possible to perform a graphical goodness-of-fit test based upon pos-

terior sampling results and the probability integral transform theorem. Full inference

is available for the conditional cumulative distribution function F (y|x; G) at any de-
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sired points (x, y) and, if the model is performing as desired, the values {F (y1|x1; G),

. . . , F (yn|xn; G)} should be uniformly distributed. Indeed, Figure 3.4 shows the pos-

terior mean sample for these values (i.e., the histogram of {E [F (y1|x1; G)|D] , . . . ,

E [F (yn|xn; G)|D]}) and it is clear that the distribution is roughly uniform.

3.1.3 Tobit Quantile Regression

There are several regression applications that involve constrained observations

for the response variable, and possibly also for the covariates. For instance, different

types of censoring or truncation are commonly present in survival analysis data. In

econometrics applications, a standard scenario involves certain forms of partially ob-

served responses leading to what is typically referred to as Tobit regression models,

after the work by Tobin (1958) (see, e.g. Amemiya, 1984, for a thorough review of

various types of Tobit models).

The standard Tobit model is formulated through latent random variables ỹi,

which are assumed independent and normally distributed with mean xT
i β and variance

σ2. Tobit quantile regression arises by modeling a specific quantile of the latent response

distribution as a function of the covariates. The covariate vectors xi are observed for all

subjects in the data. However, the observed responses, yi, are constrained according to

yi = max{y0
i , ỹi}, where the y0

i are fixed threshold points. In applications, the threshold

value is typically the same for all data subjects, and we can thus set without loss of

generality y0
i = 0 (as in our data example of Section 3.1.4). Formally, this data structure

corresponds to (fixed) left censoring. However, there is a subtle difference with more
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traditional survival analysis applications, since in economics settings, the latent variable

ỹ may exist only conceptually, e.g., as a particular utility functional formulated based

on empirical and/or theoretical studies.

The classical semiparametric literature includes several estimation techniques

for both the mean regression and quantile regression Tobit models (see, e.g. Buchinsky

and Hahn, 1998, and further references therein). Again, these approaches do not include

probabilistic modeling for the latent response distribution and are thus limited in terms

of the range of inferences that they can provide. Bayesian approaches to Tobit regression

for econometrics applications appear to have focused on parametric modeling with linear

regression functions. For instance, the early work of Chib (1992) developed Bayesian

inference for linear Tobit regression with normal errors whereas, more recently, Yu and

Stander (2007) studied linear Tobit quantile regression with asymmetric Laplace errors.

The modeling framework developed in Chapter 2 and Section 3.1.1 can be

utilized to provide a flexible nonparametric approach to inference for Tobit quantile

regression. Again, we start with a DP mixture model, f(ỹ,x; G) =
∫

k(ỹ, x ; θ) dG(θ),

G | α, ψ ∼ DP(α, G0(ψ)), for the joint distribution of the latent response variable ỹ

and the vector of covariates x. The mixture kernel can be defined by a multivariate

normal with continuous covariates (as in Section 2.1) or involve discrete components

when categorical covariates are available (as discussed in Section 2.3). The first stage of

the hierarchical model for the data, (yi,xi), i = 1, ..., n, is built again from conditional

independence given the mixing parameters θi, i = 1, ..., n, but is modified with respect

to (2.3) to replace the (conditional) response kernel density with its corresponding dis-
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tribution function for all i with yi = 0. The analogous modifications to the MCMC

posterior simulation method of Section 2.4 yield the full posterior for G, α, ψ and the

θi, i = 1, ..., n. We provide more details in Section 3.1.4 with the concrete DP mixture

model used for our data illustration.

As in Section 3.1.1, full and exact inference for any set of quantile regression

curves emerges from the posterior realizations for the conditional response density f(· |

x0; G) over grid values x0 in the covariate space. Note that here, for any specified

point y0 > 0 associated with fully observed responses, f(y0 | x0; G) in the notation

of Section 3 is given through f(y0 | ỹ = y0 > 0,x0; G). Hence, inference for Tobit

quantile regression is based on the conditional response density, given x, arising from

the underlying DP mixture f(ỹ,x; G), conditionally also on ỹ > 0. Moreover, using

the posterior realizations for f(ỹ | x; G), we can obtain the posterior for Pr(ỹ ≤ 0 |

x0; G). A collection of these posteriors for a set of specified x0 provides information on

the relationship between the covariates and the censoring mechanism for the response.

Because of the flexibility of the mixture model for the joint distribution of ỹ and x, the

proposed modeling approach enables potentially different structure for the relationship

between the response and the covariates across different quantile regression curves as

well as for the relationship between the covariates and the underlying mechanism that

constrains the response. This is a practically important advantage over parametric

formulations (as in, e.g., Yu and Stander, 2007) that postulate a linear regression form

for all the relationships above.
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3.1.4 Female Labor Supply Data Example

To illustrate the extensions developed in Section 3.1.3, we consider a subset

of the data on female labor supply corresponding to the University of Michigan Panel

Study of Income Dynamics for year 1975. Using this data set, Mroz (1987) presents a

systematic analysis of theoretical and statistical assumptions used in empirical models

of female labor supply. The sample considered by Mroz (1987) consists of 753 married

white women between the ages of 30 and 60, with 428 of them working at some time

during year 1975. The 428 fully observed responses, yi, are given by the wife’s work (in

100 hours) during year 1975. For the remaining 325 women, the observed work of yi = 0

corresponds to negative values for the latent labor supply response, ỹi. The data set

includes covariate information on family income, wife’s wage, education, age, number of

children of different age groups, and mother’s and father’s educational attainment, as

well as on husband’s age, education, wage, and hours of work. For our purely illustrative

analysis, we consider number of children as the single covariate, x. This covariate

combines observations from two variables in the data set, “number of children less than

6 years old in household” and “number of children between ages 6 and 18 in household”.

Although the response variable can be treated as continuous (non-zero observed

responses range from 12 to 4950 hours), the covariate is a categorical variable (with

values that range from 0 to 8 children). As discussed in Section 2.3, there are several

possible choices for the DP mixture kernel. Here, we consider the simple setting with

k(ỹ, x; θ) comprising independent normal and Poisson components, a version that is
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sufficient for our illustrative purposes. (In other applications, a similar model based

on negative binomial, rather than Poisson, components for the mixture kernel could be

considered as a robust alternative.) Specifically, we work with the following DP mixture

model,

f(ỹ, x; G) =

∫

N(ỹ; µ, σ2)Po(x; λ) dG(µ, σ2, λ),

G | α, ψ ∼ DP(α, G0(ψ)), (3.1)

for the latent labor supply response and number of children covariate. Here, N(· ; µ, σ2)

denotes the density of the normal distribution with mean µ and variance σ2, and Po(·;

λ) the probability mass function of the Poisson distribution with mean λ. Moreover, G0

is built from independent components, specifically, N(ψ1, ψ2) for µ, Ga(c, ψ3) for σ−2,

and Ga(d, ψ4) for λ, with hyperpriors placed on ψ = (ψ1, ψ2, ψ3, ψ4).

The results reported below are based on a Ga(1, 0.2) prior for α, and N(10, 40),

Ga(2, 40), Ga(2, 0.2), and Ga(3, 3) priors for ψ1, ψ−1
2 , ψ3, and ψ4, respectively. The

remaining parameters of G0 are set to c = 2 and d = 1. We have experimented increasing

and decreasing the variability around α and ψ1 and the prior expectations for ψ2 and

ψ3, as well as with alternative specifications for ψ4, and have not found this to affect the

analysis. Results are based on an MCMC sample of 100,000 parameter draws recorded

on every fifth iteration following a (conservative) burn-in period of 50,000 iterations.

Let p(θ1, ..., θn | α, ψ) be the, analogous to (2.12), Pólya urn prior for the

mixing parameters θi = (µi, σ
2
i , λi), that results after integrating G over its DP prior,

and set I0 = {i : yi = 0} and I1 = {i : yi > 0}. Then, the posterior for α, ψ and the θi
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Figure 3.5: Female labor supply data. Posterior estimates for f(ỹ | x; G) given x =
0, ..., 5 children. Solid and dashed lines correspond to posterior mean and 90% posterior
interval estimates, respectively.

is proportional to

p(α)p(ψ)p(θ1, ..., θn | α, ψ)
∏

i∈I0

Φ(−µi/σi)
∏

i∈I1

N(yi; µi, σ
2
i )

n
∏

i=1

Po(xi; λi)

where Φ(·) is the standard normal distribution function. We sample from the full pos-

terior, that includes also G, using an MCMC method similar to the one described in

Section 2.4. The structure of the Metropolis-Hastings steps for the θi remains the same.

However, when resampling, for j = 1, ..., n?, from g0(µ
?
j , σ

?2
j , λ?

j ; ψ)
∏

{i:wi=j} Po(xi; λ
?
j )

∏

i∈I0∩{i:wi=j} Φ(−µ?
j/σ?

j )
∏

i∈I1∩{i:wi=j} N(yi; µ
?
j , σ

?2
j ), the posterior full conditionals for

41



                            0 Children

0.25

0.50

0.75

1.00

                            1 Children

                            2 Children

0.25

0.50

0.75

1.00

                            3 Children

                            4 Children

0.25

0.50

0.75

1.00

0 10 20 30

                            5 Children

0 10 20 30

Observed work in 100 hours

C
on

di
ti

on
al

 d
is

tr
ib

ut
io

n 
fu

nc
ti

on
 fo

r 
po

si
ti

ve
 o

bs
er

ve
d 

w
or

k

Figure 3.6: Female labor supply data. Posterior estimates for Pr(ỹ < u | ỹ > 0, x; G)
for x = 0, . . ., 5 children. The solid lines are posterior mean estimates and dashed lines
indicate 90% posterior interval estimates.

µ?
j and σ?2

j are no longer available in a form from which it is easy to draw. Sampling

proceeds through Metropolis-Hastings steps with normal proposals for µ?
j and gamma

proposals for σ?2
j . The posterior full conditional for λ?

j is a gamma distribution with

shape parameter d +
∑

{i:wi=j} xi and rate parameter ψ4 + nj . The DP precision pa-

rameter is, again, updated using the method from Escobar and West (1995). Finally,

the posterior full conditionals for all four hyperparameters in ψ have standard forms.

As in Section 2.4, the posterior samples for G can be used to obtain the poste-
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rior of the conditional distribution for the latent labor supply response given a specific

value for the number of children covariate. Posterior estimates for the conditional

densities f(ỹ | x; G), corresponding to x = 0, ..., 5 children, are shown in Figure 3.5.

The estimated latent response densities have non-standard shapes that change with the

covariate value in a fashion that is difficult to describe with a parametric regression re-

lationship. The peak around 2000 hours of work, which is seen in conditional response

densities for lower numbers of children, corresponds to a traditional full-time job (50

weeks of 40 hours). The nonparametric DP mixture model is exposing density struc-

ture that would have been missed under standard parametric assumptions for the latent

response distribution, e.g., the models developed by Chib (1992) and Yu and Stander

(2007) based on normal and asymmetric Laplace distributions, respectively.

Non-standard features are also seen in response distributions for positive ob-

served work. This is illustrated in Figure 3.6, which shows posterior estimates for

Pr(ỹ < u | ỹ > 0, x; G) = Pr(0 < ỹ < u, x; G)/ Pr(ỹ > 0, x; G), i.e., the conditional

distribution function at u > 0, given positive observed work and given x; results are

plotted for x = 0, ..., 5 children. For any value of x, working with a grid of u values,

posterior realizations for Pr(ỹ < u | ỹ > 0, x; G) are given by

Pr(ỹ < u | ỹ > 0, x; GL) =

L
∑

l=1

plPo(x; λl) [Φ((u − µl)/σl) − Φ(−µl/σl)]

L
∑

l=1

plPo(x; λl) [1 − Φ(−µl/σl)]

, (3.2)

where, following the notation of Section 2.4, G = {pl, (µl, σ
2
l , λl) : l = 1, ..., L} is the

truncated posterior realization for G.

Next, inference about conditional quantiles qp(x) for positive observed work
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proceeds based on these posterior realizations. In particular, for any specified p and

any value x for the number of children, the posterior samples {qpb(x) : b = 1, ..., B} for

qp(x) are obtained (with interpolation) from p = Pr(ỹ < qpb(x) | ỹ > 0, x; G). As an

illustration, Figure 3.7 plots boxplots of the posterior samples for q0.5(x) and q0.9(x).

(Boxplots are constructed such that the boxes contain the interquartile sample range

and the whiskers extend to the most extreme sample point that is no more than 1.5

times the interquartile range outside the central box.) Noteworthy is the different rate

of decrease in the median and 90-th percentile regression relationships between positive

observed work and number of children. Note also that the posteriors for q0.9(x) at

x = 1, 2, 3, 4 children are more concentrated than the posterior for q0.9(0), whereas such

a difference is substantially less pronounced in the posteriors for q0.5(x). This difference

in the posterior uncertainty around the right tail of the conditional distribution functions

at x = 0 and at x = 1, 2, 3, 4 children is also reflected in the corresponding posterior

estimates in Figure 3.6.

Finally, as discussed in Section 3.1.3, of interest might be inference for Pr(ỹ ≤

0 | x; G), i.e., the probability of zero hours of observed work given the number of

children. For any value of x = 0, ..., 8, posterior samples for this probability arise

from Pr(ỹ ≤ 0 | x; GL) =
[

∑L
l=1 plPo(x; λl)Φ(−µl/σl)

]

/
∑L

l=1 plPo(x; λl). Boxplots of

these posterior samples are shown in Figure 3.8, indicating fairly similar relationship

between the covariate and the censoring mechanism for the response when x = 0, 1

children; a noticeable increase in the probability of zero hours of observed work with

x = 2, 3, 4 children; and similar probabilities, albeit with increased posterior uncertainty,
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Figure 3.7: Female labor supply data. Posterior samples of positive observed work
median (left panel) and 90-th percentile (right panel) given the realized values of the
covariate. The positive data observations are shown in grey.
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Figure 3.8: Female labor supply data. Posterior samples for Pr(ỹ ≤ 0 | x; G).
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for x = 5, 6, 7, 8 children.

To summarize, posterior estimates for the conditional response distribution of

ỹ and related functionals, including inference about the distribution for y conditional on

ỹ > 0, exhibit behavior that would be very difficult to capture with existing Bayesian

estimation methods. From an economic perspective, the figures suggests that the main

effect of an increase in offspring on labor supply is to reduce the proportion of women

working full-time. This is especially clear in Figure 3.5, where the density peak corre-

sponding to full-time labor decreases in magnitude as the number of children increases

and the probability mass is redistributed in the region ỹ < 2000 hours of work.

3.2 Markov Switching Regression

The focus of this section is to develop a flexible approach to nonparametric

switching regression combining DP mixture nonparametric regression with a hidden

Markov model. A modeling framework for data that has been drawn from a number

of unobserved states, where each state defines a different relationship between response

and covariates, switching regression was originally developed in the context of econo-

metrics (Goldfeld and Quandt, 1973; Quandt and Ramsey, 1978) and has primarily been

approached through likelihood-based estimation. When response and covariates occur

in time, temporal dependence for state membership can be used to guide the modeling.

A hidden Markov mixture model in this context holds that the state vector constitutes

a Markov chain, and thus introduces an underlying dependence into the data. Robert
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et al. (1993) and Chib (1996) discuss hidden Markov models in the estimation of mix-

tures of parametric densities. Our methodological framework involves a known small

number of states where prior information is available on the properties of the under-

lying state Markov chain, but there is a need for nonparametric modeling within each

subpopulation. Hence, the motivation for our approach is distinct from that of hidden

Markov modeling with an unknown number of states as in, e.g., the work by Robert

et al. (2000) and Beal et al. (2002). Our assumption that the number of mixture states

is known fits within the general premise of an informative state estimation coupled with

flexible nonparametric modeling for density and regression estimation.

Mixtures of regressions are used to study multiple populations, each of which

involves a different conditional relationship between response and covariates. The basic

switching regression model defines distinct regression functions for data that have been

drawn from populations corresponding to a number of unobserved states. Following the

early work of Goldfeld and Quandt (1973) and Quandt and Ramsey (1978), the more

recent literature includes, for instance, approaches for switching dynamic linear models

(Shumway and Stoffer, 1991) and switching ARMA models (Billio et al., 1999). More-

over, Hurn et al. (2003) describe a Bayesian decision theoretic approach to estimation

for mixtures of linear regressions, whereas the approach of Shi et al. (2005) offers a

departure from the linear regression assumption through a mixture of Gaussian process

regressions.

The generic mixtures of regressions setting holds that the response y given

covariates x has been drawn from a member of a heterogeneous set of R conditional
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distributions defined by the densities f1(y | x), . . . , fR(y | x), and hence that Pr(y | x) =

w1f1(y | x) + . . . + wRfR(y | x), where
∑R

r=1 wr = 1. We propose a departure from this

standard form, wherein the response and covariates are jointly distributed according

to one of the densities f1(x, y), . . . , fR(x, y) – i.e., now Pr(x, y) = w1f1(x, y) + . . . +

wRfR(x, y) – and therefore Pr(y | x) = w?
1f1(x, y) + . . . + w?

RfR(x, y), where w?
r =

wr/
∑R

r=1 wrfr(x). Thus, the approach is appropriate whenever mixture component

probabilities for a given x and y should be dependent upon the joint distribution for

response and covariates, even though primary interest is in the regression relationship

for response given covariates.

Section 3.2.1 presents the hidden Markov DP mixture model, and Sections

3.2.2 and 3.2.3 develop an efficient Markov chain Monte Carlo (MCMC) algorithm for

posterior simulation. Effective sampling of the hidden chain states is essential to success

of the MCMC algorithm, and we thus propose a method based on forward-backward

sampling (see, e.g., Scott, 2002). An extension of the hidden Markov DP mixture model

to include external variables which are correlated with the underlying Markov chain,

but conditionally independent of the joint covariate-response distribution, is described

in Section 3.2.4. In Section 3.2.5, the methods are illustrated with an application

from fisheries research involving analysis of stock-recruitment data under shifts in the

ecosystem state.
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3.2.1 Model Specification

Here, we develop the extension of DP mixture implied conditional regression

to the context of time dependent switching regression. The data consist of a set of

covariate vectors xt and corresponding responses yt observed at times t = 1, . . . , T . The

data from each time point are associated with a hidden state variable, ht ∈ {1, . . . , R},

such that, given ht, the response-covariate joint distribution is defined by a state-specific

density fht
(xt, yt). As in Section 2.1, we begin by describing density estimation in the

d = dx + 1 dimensional setting, with data D = {zt = (x1
t , . . . , x

dx

t , yt) : t = 1, . . . , T}.

Now, however, the successive observations zt are correlated through dependence in state

membership h = (h1, . . . , hT ), which constitutes a stationary Markov chain defined by

an R×R transition matrix Q. Although we consider only first-order dependence in the

Markov chain, the model and posterior simulation methods can be extended to handle

higher order Markov chains.

The first-order hidden Markov location-scale normal DP mixture model can

then be expressed as follows,

zt | ht, Ght

ind∼ fht
(zt; Ght

) =

∫

N(zt; µ, σ)dGht
(µ, σ), t = 1, . . . , T

Gr | αr, ψr
ind∼ DP (αr, G0(ψr)) , r = 1, . . . , R (3.3)

h | Q ∼ Pr(h | Q) =
T

∏

t=2

Qht−1,ht
,

where we denote the r-th row of Q by Qr = (Qr,1, . . . , Qr,R), with Qr,s = Pr(ht = s |

ht−1 = r), for r, s = 1, ..., R. We assume that, in the prior, each state is equally likely

for h1. Moreover, the DP centering distributions, G0(µ, σ; ψr), are equal to N(µ ; mr,
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Vr) Wνr( σ−1; S−1
r ), with ψr = (mr, Vr, Sr). For r = 1, . . . , R, we place hyperpriors

on ψr and αr such that π(ψr) = N (mr; amr , Bmr) WaVr
(V −1

r ; B−1
Vr

) WaSr
(Sr; BSr), and

π(αr) = Ga(αr; aαr , bαr). The prior for Q is built from independent Dirichlet distribu-

tions, π(Qr) = Dir(Qr; λr), where Dir(Qr; λr), with λr = (λr,1, . . . , λr,R), denotes the

Dirichlet distribution such that E[Qr,s] = λr,s/(
∑R

i=1 λr,i).

Applying the regression approach of Section 2.1, the joint response-covariate

density specification in (3.3) yields our proposed hidden Markov switching regression

model. In particular, conditional on the (truncated) state-specific random mixing dis-

tribution, GL
r , whose posterior distribution is obtained using the MCMC method devel-

oped in Section 3.2.2, the conditional density for y given x drawn from the population

corresponding to state r is

fr(y | x; GL
r ) =

fr(x, y; GL
r )

fr(x; GL
r )

=

∑L
l=1 pr,lN (x, y; µr,l, Σr,l)

∑L
l=1 pr,lN

(

x; µx
r,l, Σ

xx
r,l

) . (3.4)

The conditional mean regression for state r, Er

[

y | x; GL
r

]

, can be estimated through a

state-specific application of equation (2.11).

In practice, the hyperparameters for the αr, ψr and for Q need to be care-

fully chosen. We are motivated by a setting where prior information is available on the

state vector h, and the λr parameters of π(Qr) are chosen based on prior expectation

for the probabilities of moving from state r to each state in a single time step. How-

ever, this prior information pertains only to the transition probabilities between states

and does not fully identify the state components. Thus, we need to provide enough

information to facilitate identification of the mixture components and ensure that the
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transition probabilities defined by Q refer to the intended states. On the other hand,

the nonparametric regression is motivated by a desire to be noninformative about each

regression component and we thus seek a more automatic prior specification for each

ψr.

Within the framework of our DP mixture implied conditional regression, it is

possible to have each state-specific centering distribution, G0(ψr), associate the densities

∫

N(z; µ, σ)dGr(µ, σ) with specific regions of the joint response-covariate space, without

putting prior information on the shape of the conditional response density or regression

curve within each region. Since the prior parameters mr and Vr control the location of

the normal kernels, the hyperparameters amr , Bmr , aVr , and BVr can be used to express

prior belief about the state-specific joint response-covariate distributions. Specifically,

assume a prior guess for the mean and covariance matrix corresponding to the population

for state r, where prior information for the covariance may only be available in the form

of a diagonal matrix. Then, we can set amr equal to the prior mean, Bmr to the prior

covariance, and choose aVr and BVr such that E[Vr] is equal to the prior covariance

(alternatively, E[V −1
r ] can be set equal to the inverse of the prior covariance matrix and

we have observed the method to be robust to either specification). In the absence of such

prior information, one can use a data-dependent prior specification technique. Given a

prior allocation of observations expressed as the state vector hπ = (hπ
1 , ..., hπ

T ), each set

{amr , Bmr , BVr} can be specified through the mean and covariance of the data subset

{zt : hπ
t = r}. In particular, amr is set to the state-specific data mean and both Bmr

and E[Vr] = (aVr − d− 1)−1BVr are set to the state-specific data covariance. With care
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taken to ensure that it does not overly restrict the component locations, this approach

provides an automatic prior specification that combines strong state allocation beliefs

with weak information about the state-specific regression functions.

For the Sr we seek only to scale the mixture components to the data, and thus

we set all the E(Sr) = aSrBSr equal to a diagonal matrix with each diagonal entry a

quarter of the full data range for the respective dimension. The precision parameters

aVr , aSr , and νr, for r = 1, . . . , R, are set to values slightly larger than d+2; in practice,

we have found 2(d + 1) to work well. Working with various data sets, including the

one in Section 3.2.5, we have observed results to be insensitive to reasonable changes

in this specification. In particular, experimentation with a variety of choices for the

matrices BSr , indicating prior expectation of either more or less diffuse normal kernel

components, resulted in robust posterior inference.

Specification of the hyperpriors on DP precision parameters is facilitated by

the role that each αr plays in the prior distribution for the number of unique components

in the set of nr latent mixing parameters θt = (µt, σt) corresponding to state r. For a

given nr (i.e., conditional on h), we can use results from Antoniak (1974) to explore

properties of this prior for different αr values. For instance, the prior expected number

of unique components in the set {θt : ht = r} (i.e., the set of latent mixing parameters,

as in Section 2.4, belonging to state r) is approximately αr log[(nr + αr)/αr], and this

expression may be used to guide prior intuition about the αr.
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3.2.2 Posterior Simulation

Here, we present an MCMC method for posterior inference under the model

developed in Section 3.2.1. Detailed expressions for the algorithm follow in Section 3.2.3.

We first discuss an adaptation to switching regression of the more standard MCMC

approach, involving marginalization of the random mixing distributions Gr in (3.3) over

their DP priors, as outlined in Section 2.4. Because it necessitates individual conditional

updates for each element of the state vector h, this approach is inefficient. Hence, we

propose an alternative MCMC algorithm, which is based on a truncation approximation

of each Gr to facilitate a more efficient forward-backward recursive sampling of state

vector h.

To obtain the full probability model corresponding to (3.3), we introduce latent

parameters θ = {θt = (µt, σt) : t = 1, ..., T} such that the first stage in (3.3) is replaced

with zt | θt
ind∼ N(zt; θt) and θt | ht, Ght

ind∼ Ght
, for t = 1, ..., T . Then, the full

posterior, comprising α = {αr : r = 1, ..., R}, ψ = {ψr : r = 1, ..., R}, Q, h, θ, and

{Gr : r = 1, ..., R}, is proportional to
(

∏R
r=1 π(αr)π(ψr)π(Qr)

)

Pr(h | Q)
(

∏R
r=1 dF(Gr

| αr, G0(ψr))
∏

{t:ht=r} dGr(θt)
) (

∏T
t=1 N(zt; θt)

)

, using the fact that, given h, the

specification θt | ht, Ght

ind∼ Ght
, t = 1, ..., T , can be expressed as

∏R
r=1

∏

{t:ht=r} dGr(θt).

That is, conditionally on h, the vector of latent mixing parameters breaks down into

state-specific subvectors {θt : ht = r}, r = 1, ..., R, such that the distribution of each is

built from independent Gr distributions for the θt corresponding to state r. Therefore,

for each Pr({θt : ht = r}, Gr | h, αr, ψr) = dF(Gr | αr, G0(ψr))
∏

{t:ht=r} dGr(θt), we
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can apply results from Blackwell and MacQueen (1973) and Antoniak (1974) to write

Pr({θt : ht = r}, Gr | h, αr, ψr) = dF(Gr | α?
r , G

?
r0)Pr({θt : ht = r} | h, αr, ψr).

Here, Pr({θt : ht = r} | h, αr, ψr) is the Pólya urn marginal prior for {θt : ht = r}

(induced by marginalizing Gr in Pr({θt : ht = r}, Gr | h, αr, ψr) over its DP prior);

α̃r = αr +nr (where nr = |{t : ht = r}|); and G̃r0(·) ≡ G̃r0(· | h, {θt : ht = r}, αr, ψr) =

(αr + nr)
−1

[

αrdG0(· ; ψr) +
∑

{t:ht=r} δθt
(·)

]

.

Hence, the full posterior assumes the form Pr(α, ψ, Q, h, θ | D)
∏R

r=1 dF(Gr

| α̃r, G̃r0), where Pr(α, ψ,Q,h, θ | D) is equal to

Pr(h | Q)

(

∏R

r=1
π(αr)π(ψr)π(Qr)Pr({θt : ht = r} | h, αr, ψr)

) (

∏T

t=1
N(zt; θt)

)

,

the marginal posterior corresponding to the finite-dimensional portion of the full param-

eter vector. This posterior can be sampled by extending standard MCMC techniques

for DP mixtures (see, e.g., Neal, 2000). Most of the algorithm involves a straightforward

adaptation of the methodology presented in Section (2.4), with the only major change

being a joint full conditional draw for each (ht, θt) pair given the incomplete parameter

vectors h−t and θ−t. In particular, given a present value of (ht, θt), a Metropolis-

Hastings step is to first propose a new ht such that

Pr(ht = r) =
Qht−1,rQr,ht+1

∑R
s=1 Qht−1,sQs,ht+1

(3.5)

followed by a proposal for a new θt = θ′, given r, with probability density (αr+n−
r )−1 [αr

dG0(θ
′ ; ψr) +

∑

{i6=t:hi=r} δθi
(θ′)]. The move from (ht, θt) to (r, θ′) is then accepted with

probability min{N(zt; θ
′)/N(zt; θt), 1}. Using an extension of the approach in Section
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(2.4), posterior samples for the full parameter vector can be obtained by augmenting

each posterior sample from Pr(α, ψ, Q, h, θ | D) with posterior realizations for the Gr

drawn from a truncation approximation to DP(α̃r, G̃r0), for r = 1, ..., R.

In general, although sampling for θ conditional on h is not difficult, there

will be no possible marginal update for h conditional on θ (i.e. without conditioning

on the Gr). In the posterior simulation approach described above, this forces sampling

each individual (ht, θt) from its posterior full conditional even though forward-backward

sampling is a substantially more efficient method for exploring the state space (see, e.g.,

Scott, 2002). Forward-backward sampling in this setting would first require forward cal-

culating for each t the joint probability mass function for states ht and ht+1 conditional

on the incomplete dataset {z1, . . . , zt}, the prior transition matrix Q, and the random

mixing distributions {G1, . . . , GR}. This is followed by backward sampling ht condi-

tional on ht+1 for t = T −1, . . . , 1, after first sampling for hT from its marginal posterior

full conditional. It is thus necessary to evaluate state probabilities with respect to the

entire Gr distributions, and the necessary calculations must be made using the finite

stick-breaking GL
r , such that the posterior sample for h is dependent upon the level

of truncation. The blocked Gibbs sampling method for DP mixture models (Ishwaran

and James, 2001) provides a natural approach wherein the entire MCMC algorithm is

based on a finite stick-breaking approximation of the DP. As well as being the consis-

tent choice if the truncated distributions are used in state vector draws, blocked Gibbs

can lead to very efficient sampling for the complete posterior (for further discussion of

the base algorithm and its properties, look to Ishwaran and James, 2001; Ishwaran and
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Zarepour, 2000, 2002).

Using the DP stick-breaking representation, we replace each Gr in model (3.3)

with a truncation approximation of the form in (2.8). Specifically, for specified (finite)

L, we work with GL
r (·) =

∑L
l=1 pr,lδϑr,l

(·), where the ϑr,l = (µr,l, Σr,l), l = 1, ..., L, are

i.i.d. G0(ψr), and pr = (pr,1, ..., pr,L) has distribution PL(pr | 1, αr) defined in (2.10).

Hence, each GL
r is defined by the set of L location-scale parameters ϑr = (ϑr,1, ..., ϑr,L)

and weights pr. Guidelines to choose the truncation level L for the DP approxima-

tion, up to any desired accuracy, can be obtained, e.g., from Ishwaran and Zarepour

(2000). For instance, conditional on αr, the quantity
∑∞

l=B pr,l corresponding to the full

DP mixture model has expectation (αr/(1 + αr))
B−1 and variance (αr/(2 + αr))

B−1 −

(αr/(1 + αr))
2(B−1). Thus, based upon these moments and prior guesses for αr, the

truncation L may be chosen to ensure that the residual probability
∑∞

l=L pr,l for each

state is acceptably small. Although the modeling and inference framework does not

restrict us to a common truncation level L for all states, we consider this setting that

results in simpler notation. In practice, it is convenient to choose a single L that is

greater than all the desired state-specific truncation levels.

Now the first stage of model (3.3) is replaced with zt | ht, (pht
, ϑht

)
ind∼

∑L
l=1 pht,lN(zt; ϑht,l), t = 1, ..., T . The limiting case of this finite mixture model (as

L → ∞) is the countable DP mixture model fht
(zt; Ght

) =
∫

N(zt; θ)dGht
(θ) in (3.3).

We introduce configuration variables k = (k1, ..., kT ), where each kt takes values in

{1, ..., L}, such that, conditionally on ht, zt given kt is distributed N(zt; ϑht,kt
). Hence,

model (3.3) with the finite stick-breaking approximation can be expressed in the follow-
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ing hierarchical form

zt | ϑht
, kt

ind∼ N(zt; ϑht,kt
), t = 1, ..., T

kt | ht,pht

ind∼
L

∑

l=1

pht,lδl(kt), t = 1, ..., T (3.6)

pr, ϑr | αr, ψr
ind∼ PL(pr | 1, αr)

L
∏

l=1

dG0(ϑr,l; ψr), r = 1, ..., R

with h | Q ∼ Pr(h | Q) =
∏T

t=2 Qht−1,ht
, and the hyperpriors for {(αr, ψr) : r = 1, ..., R}

and Q given in Section 3.2.1. The full posterior corresponding to model (3.6) is now

proportional to

Pr(h | Q)

R
∏

r=1

{

π(αr)π(ψr)π(Qr)PL(pr | 1, αr)

(

L
∏

l=1

dG0(ϑr,l; ψr)

)

(3.7)

·





∏

{t:ht=r}

N(zt; ϑr,kt
)

L
∑

l=1

pr,lδl(kt)











.

Here, again, the key observation is that, conditionally on h, the first two stages of

model (3.6),
∏T

t=1 Pr(zt, kt | ht, (pht
, ϑht

)) =
∏T

t=1 N(zt; ϑht,kt
)(

∑L
l=1 pht,lδl(kt)), can be

expressed in the state-specific form,
∏R

r=1

{

∏

{t:ht=r} N(zt; ϑr,kt
)(

∑L
l=1 pr,lδl(kt))

}

. To

explore the full posterior, we develop an MCMC approach that combines Gibbs sampling

steps for parameters kt, for t = 1, ..., T , and (αr, ψr, Qr,pr, ϑr), for r = 1, ..., R, with

forward-backward sampling for the state vector h. We discuss the latter next, deferring

to Section 3.2.3 the details of a Gibbs sampler for all other parameters.

Regarding the state vector h, by virtue of our sampling the truncated random

mixing distributions for each state, we are able to use forward-backward recursive sam-

pling for the full conditional distribution, Pr(h|Q, {ϑr,pr : r = 1, . . . , R},D). Define

the R × R filtering matrix P t = P (ht, ht+1| z1, . . . , zt, {ϑr, pr : r = 1, . . . , R}, Q)
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representing a joint probability mass function for states ht and ht+1 conditional on the

incomplete dataset {z1, . . . , zt}, such that row r of P t defines the vector of probabil-

ities assigned to possible next states for present state ht = r. The forward step is to

recursively calculate the matrices P 3, P 4, . . . , P T such that

P t
r,s = Pr(ht−1 = r, ht = s|z1, . . . , zt, [ϑr,pr], [ϑs,ps])

= C−1
t Pr(zt|ht = s,ϑs,ps) Pr(ht = s|ht−1 = r) Pr(ht−1 = r|z1, . . . , zt−1, ϑr,pr)

= C−1
t

L
∑

l=1

ps,lN(zt; ϑs,l)Qr,s

R
∑

i=1

P t−1
i,r , (3.8)

with P 2 such that each element P 2
r,s is equal to Pr(h1 = r, h2 = s | z1, z2, [ϑr, pr],

[ϑs, ps]) = C−1
2

∑L
l=1 ps,l N(z2; ϑs,l) Qr,s

∑L
l=1 pr,l N(z1; ϑr,l), and where each Ct is a

constant such that the sum of the elements of P t is one. The backward sampling begins

by drawing hT from Pr(hT = r|{ϑr,pr : r = 1..R},Q,D) =
∑R

s=1 P T
s,r. Then, for

t = T − 1, . . . , 1, we have that Pr(ht = r|ht+1, {ϑr,pr : r = 1, . . . , R},Q,D) ∝ P t+1
r,ht+1

.

In this way, h is sampled at once conditional on the entire data set and conditional on

the truncated random mixing distributions.

3.2.3 Blocked Gibbs MCMC Algorithm Details

Here, we detail the approach to MCMC posterior simulation discussed in Sec-

tion 3.2.2. Recall that the key to the finite stick-breaking algorithm is that we are able

to use forward-backward recursive sampling of the posterior conditional distribution for

h as described in Section 3.2.2. Gibbs sampling details for all other parameters of model

(3.6) are provided below, in an extension of the general blocked Gibbs MCMC scheme
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of Ishwaran and James (2001).

First, for each t = 1, ..., T , kt has a discrete posterior full conditional dis-

tribution with values in {1, ..., L} and corresponding probabilities pht,l N(zt; ϑht,l) /

{∑L
b=1 pht,b N(zt; ϑht,b)}, for l = 1, ..., L.

For each r = 1, ..., R, the posterior full conditional distribution for pr is pro-

portional to PL(pr | 1, αr)
∏

{t:ht=r}

(

∑L
l=1 pr,lδl(kt)

)

= PL(pr | 1, αr)
∏L

l=1 p
Hr,l

r,l , where

Hr,l =
∑T

t=1 δ[ht=r,kt=l]. Note that the PL(pr | 1, αr) prior for pr, defined constructively

in (2.10), is given by

PL(pr | 1, αr) = αL−1
r pαr−1

r,L (1−pr,1)
−1(1−(pr,1 +pr,2))

−1...

(

1 −
∑L−2

l=1
pr,l

)−1

. (3.9)

Recall the generalized Dirichlet distribution GD(p;a,b) (Connor and Mosimann, 1969)

for random vector p = (p1, ..., pL), supported on the L dimensional simplex, with density

proportional to

pa1−1
1 . . . p

aL−1−1
L−1 p

bL−1−1
L (1 − p1)

b1−(a2+b2) . . . (1 − (p1 + . . . + pL−2))
bL−2−(aL−1+bL−1),

where the parameters are a = (a1, ..., aL−1) and b = (b1, ..., bL−1). Then, PL(pr |

1, αr) ≡ GD(pr;a,b) with a = (1, ..., 1) and b = (αr, ..., αr). Moreover, the
∏L

l=1 p
Hr,l

r,l

form is also proportional to a GD(pr;a,b) distribution with a = (Hr,1+1, ..., Hr,L−1+1)

and b = ((L − 1) +
∑L

l=2 Hr,l, ..., 2 + Hr,L−1 + Hr,L, 1 + Hr,L). Hence, the posterior

full conditional for pr can be completed to a generalized Dirichlet distribution with

parameters a = (Hr,1+1, ..., Hr,L−1+1) and b = (αr +
∑L

l=2 Hr,l, αr +
∑L

l=3 Hr,l, ..., αr+

Hr,L). This distribution can be sampled constructively by first drawing independent
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vr,l ∼ β(1 + Hr,l, αr +
∑L

b=l+1 Hr,b), for l = 1, ..., L − 1, and then setting pr,1 = vr,1;

pr,l = vr,l

∏l−1
b=1(1 − vr,b), l = 2, ..., L − 1; and pr,L = 1 − ∑L−1

l=1 pr,l.

Next, for each r = 1, ..., R, the posterior full conditional distribution for ϑr is

Pr (ϑr|k, αr, ψr, {zt : ht = r})

∝
n?

r
∏

j=1



dG0(ϑ
?
r,j ; ψr)

∏

t:ht=r,k?
t =j

N(zr
t ; ϑ

?
r,j)





nu
r

∏

j=1

dG0(ϑ
u
r,j |ψr). (3.10)

Here, each ϑr has been partitioned into subsets ϑ?
r = {ϑr,l : Hr,l > 0} and ϑu

r =

{ϑr,l : Hr,l = 0}, and we introduce the index vector k? = [k?
1, . . . , k?

T ] defined such

that observation zt is allocated to component ϑ?
ht,k?

t
. For r = 1, ..., R, n?

r is the number

of elements in ϑ?
r (i.e., the number of distinct values of kt that correspond to the r-th

state), and nu
r denotes the number of elements in ϑu

r (i.e., the number of unallocated

parameters corresponding to the r-th state). We can thus sample independently each

ϑu
r,j ∼ G0(ψr) for j = 1, . . . , nu

r . With respect to the remaining (allocated) parameters,

the posterior full conditional for each ϑ?
r,j ≡ (µ?

r,j , Σ
?
r,j) is proportional to

N(µ?
r,j ; mr, Vr)Wνr(Σ

?−1
r,j ; S−1

r )
∏

{t:ht=r,k?
t =j}

N(zt; µ
?
r,j , Σ

?
r,j),

and can be sampled through draws from the full conditional for µ?
r,j and for Σ?−1

r,j .

The former is normal with covariance matrix Tj = (V −1
r + H?

r,jΣ
?−1
r,j )−1, where H?

r,j =

∑T
t=1 δ[ht=r,k?

t =j], and mean vector Tj(V
−1
r mr + Σ?−1

r,j

∑

{t:ht=r,k?
t =j} zt). The latter is

Wνr+H?
r,j

(· ; (Sr +
∑

{t:ht=r,k?
t =j}(zt − µ?

r,j)(zt − µ?
r,j)

T )−1).

The draw for ψr = (mr, Vr, Sr) for each r is facilitated by noticing that, as

seen in (3.10), the unallocated ϑr,l have just been drawn from G0(ψr) and we can

marginalize the joint conditional posterior for {ϑr, ψr} over ϑu
r to get the posterior
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full conditional Pr(ψr|ϑ?
r , n?

r) ∝ π(ψr)
∏n?

r

j=1 dG0(ϑ
?
r,j ; ψr) Hence, ψr can be updated

by separate draws from the posterior full conditionals for mr, Vr, and Sr. The full

conditional for mr is normal with covariance matrix B̃mr = (B−1
mr

+n?
rV

−1
r )−1 and mean

vector B̃mr(B
−1
mr

amr+V −1
r

∑n?
r

j=1 µ?
r,j). The full conditional for V −1

r is Wn?
r+aVr

(· ; (BVr+

∑n?
r

j=1(µ
?
r,j −mr)(µ

?
r,j −mr)

T )−1), and the full conditional for Sr is Wνrn?
r+aSr

(· ; [B−1
Sr

+

∑n?
r

j=1 Σ?−1
r,j ]−1).

Regarding the DP precision parameters, combining the Ga(aαr , bαr) prior for

αr with the relevant terms from (3.9), we obtain that, for each r = 1, ..., R, the posterior

full conditional for αr is a G(aαr + L − 1, bαr − log(pr,L)) distribution.

Finally, with the Dir(Qr; λr) prior on each row Qr of the transition matrix Q,

the posterior full conditional for Qr is Dir(Qr; λr + Jr), where Jr = (Jr,1, ..., Jr,R) with

Jr,s denoting the number of transitions from state r to state s, which are defined by the

currently imputed state vector h.

3.2.4 Extension to Semiparametric Modeling with External

Covariates

In the spirit of allowing the switching probabilities to drive the nonparametric

regression, we extend here the methodology to include additional information about the

state vector. This leads to a nonhomogeneous hidden Markov mixture where, inter-

preted in the context of our model, the hidden state provides a link between the joint

covariate-response random variable z and an external covariate vector u = {u1, . . . , uT }.

Although we develop the methodology with respect to a single covariate, the work is
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easily extendible to the setting of multiple external covariates. The standard non-

homogeneous hidden Markov model holds that the switching probabilities are depen-

dent upon the external covariates, such that Pr(ht | h1, . . ., ht−1, u) = Pr(ht | ht−1,

ut). Berliner and Lu (1999) present a Bayesian approach to nonhomogeneous hidden

Markov models in which Pr(ht|ht−1, ut) is estimated through probit regression. Our

work is more closely related to the likelihood analysis of Hughes and Guttorp (1994),

wherein a heuristic argument using Bayes theorem is proposed to justify the model

Pr(ht|ht−1, ut) ∝ Pr(ht|ht−1)L(ht; ut), where the likelihood L(ht; ut) in their example is

normal with state dependent mean (they also consider a more complicated form based

on L(ht, ht−1; ut)). Treating each ut as the realization of a random variable is quite

natural in the context of our approach. Hence, we obtain a similar model by adding a

further stage, ut|ht
ind∼ ku(ut; ϕht

) where ku is a density function and ϕ = {ϕ1, . . . , ϕR}

are state-specific parameterizations, to the prior specification for model (3.3) and as-

suming that u is conditionally independent of z1, . . . , zT given h. Thus, for t = 1, . . . ,

T , the top level specification of the model becomes

zt, ut | ht, Ght
, ϕ

ind∼ fht
(zt; Ght

)ku(ut; ϕht
). (3.11)

Clearly this implies that the hidden Markov chain is nonhomogeneous conditional on u.

But unconditionally in the prior, it is more accurate to say that both z1, . . . , zT and u

are dependent upon a shared homogeneous Markov chain and that they are conditionally

independent given h.

This extension is easily implemented within the MCMC algorithm of Section
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3.2.2. In general, the ϕ parameter set will be sampled conditional on only u and the

state allocation h. And given ϕ, only the MCMC draws that involve h need to be

altered. In detail, the forward probability matrix calculation of (3.8) becomes

P t
r,s = Pr(zt|ht = s,ϑs,ps) Pr(ht = s|ht−1 = r, ut) Pr(ht−1 = r|ϑr,pr, {zi, ui}t−1

i=1)

=
1

Ct

L
∑

l=1

ps,lN(zt|ϑs,l)ku(ut|ϕs)Qr,s

R
∑

i=1

P t−1
ir , (3.12)

with P 2 defined such that each P 2
r,s is equal to C−1

2

∑L
l=1 ps,l N(z2; ϑs,l) ku(u2; ϕs) Qr,s

∑L
l=1 pr,l N(z1; ϑr,l) ku(u1; ϕr) and the Ct updated as normalizing constants.

3.2.5 Analysis of Stock-Recruitment Relationships Subject to Envi-

ronmental Regime Shifts

The relationship between the number of mature individuals of a species (stock)

and the production of offspring (recruitment) is fundamental to the behavior of any

ecological system. This has special relevance in fisheries research, where the stock-

recruitment relationship applies directly to decision problems of fishery management

with serious policy implications (Quinn and Derisio, 1999; Bravington et al., 2000). A

standard ecological modeling assumption holds that as stock abundance increases, suc-

cessful recruitment per individual (reproductive success) decreases. However, a wide

variety of parameters will influence this reproductive relationship and there are many

competing models for the influence of biological and physical mechanisms. Munch

et al. (2005) present an overview of the literature on parametric modeling for stock-

recruitment functions, arguing for the utility of standard semiparametric Gaussian pro-
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cess regression modeling. In the same spirit, albeit under the more general DP mixture

modeling framework developed in Sections 2.1, 3.2.1, and 3.2.4, our focus is to allow

flexible regression to capture the nature of recruitment dependence upon stock without

making parametric assumptions for either the stock-recruitment function or the errors

around it.

An added complexity in studying stock-recruitment relationships is introduced

by ecosystem regime switching. It has been observed that rapid shifts in the ecosystem

state can occur, during which the parameters governing relationships such as that be-

tween stock and recruitment will undergo major change. This has been observed in the

North Pacific in particular (McGowan et al., 1998; Hare and Mantua, 2000). Although

empirical evidence of regime shifts is well documented and there have been attempts

to establish mechanisms for the effect of this switching on stock-recruitment (e.g. Ja-

cobson et al., 2005), the relationship between the physical effects of regime shifts and

their biological manifestation is still unclear. This presents an ideal setting for Markov-

dependent switching regression models due to their ability to link observed processes

that occur on different scales (in this case, biological and physical) and are correlated

in an undetermined manner.

Annual stock and recruitment for Japanese sardine from 1951-1991 will be used

to illustrate the DP hidden Markov switching regression model. Wada and Jacobson

(1998) use modeling of catch abundance and egg count samples to estimate R, the

successful recruits of age less than one (in multiples of 106 fish). With estimated annual

egg production E (in multiples of 1012 eggs) used as a proxy for stock abundance, they
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investigate the relationship between log(E) and log(R/E), the log of the proportion of

eggs that survive. Japanese sardine have been been observed to switch between favorable

and unfavorable feeding regime states related to the North Pacific environmental regime

switching discussed above. Based upon a predetermined regime allocation, Wada and

Jacobson fit a linear regression relationship for log(E) vs log(R/E) within each regime.

We consider an analysis of the Japanese sardine data using the modeling frame-

work developed in Section 3.2.1, which relaxes the parametric linear regression assump-

tion and allows for simultaneous estimation of regime state allocation and regime-specific

stock-recruitment relationships. The joint distribution of z = (log(E), log(R/E)) is as-

signed the hierarchical prior specification of model (3.3), where the underlying state of

either favorable or unfavorable feeding regimes constitutes a first order Markov chain.

The DP precision hyperparameters are aα = 2 and bα = 0.2. The prior for ψr is

specified as outlined in Section 3.2.2 such that, conditional on the prior regime allo-

cation taken from Wada and Jacobson, am1
and am2

are set to data means (5, 3) and

(5, 5) for the unfavorable and favorable regime observations respectively while Bm1
and

(aV1
− 3)−1BV1

, with diagonal (5.3, 2.6) and off-diagonal −3.1; and Bm2
and a−1

V2
BV2

,

with diagonal (4.5, 1.4) and off-diagonal −2.0; are the observed covariance matrix for

each regime. The BSr are each a diagonal matrix with diagonal (7.8, 7.7), one quarter

of the data range, and ν, a1
v, a

1
s, a

2
v, a

2
s = 2(d + 1) = 6. The prior for Q is implied by

assuming a Be(3, 1.5) prior for the probability of staying in the same state, which re-

flects the relative rarity of regime shifts. The data and prior allocation are shown in

Figure 3.9 along with draws from a normal distribution for each regime state with mean
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EG0
[µ] = amr and variance varG0

(µ | Vr = Eπ[Vr]) = Bmr + (aVr − 3)−1BVr . These

draws illustrate prior expectation of the random mixing distribution for the µr and,

noting that this does not include prior uncertainty in the µr due to the DP mixture or

variability in the prior for Vr, clearly show that the prior specification has not overly

restricted mixture components.

As described above, the sardine feeding regime is part of a larger ecosystem

state for this region of the North Pacific. The physical variables that are linked to the

ecosystem state switching can be used as external covariates for the hidden Markov

chain, as outlined in Section 3.2.4. For the purpose of illustration, we choose a single

physical variable, the winter average Pacific decadal oscillation (PDO) index, which

is highly correlated with biological regime switching (Hare and Mantua, 2000), to act

as an external covariate. The PDO index provides the first principle component of

an aggregate of North Pacific sea surface temperatures. Although it is not directly

responsible, sea surface temperature is believed to be a proxy for mechanisms such as

current flow (MacCall, 2002) that control the regime switching. The sardine data were

analyzed for the model proposed in (3.2.4) including winter average PDO from 1951 to

1991 as the vector u, a single external covariate assumed to be conditionally independent

of log(E) and log(R/E) given the regime allocation h. The above formulation for model

(3.3) was thus augmented by the statement, ut | ht
ind∼ N(ut; γht

, τ−2), with conjugate

normal priors for γ = {γ1, γ2} and gamma prior for τ−2, such that γ1 ∼ N(−0.44, 0.26),

γ2 ∼ N(0.73, 0.26), and τ2 ∼ Ga(0.5, 0.125). The γr mean values are average winter

PDO for two ten year periods that are generally accepted to fall within each ecosystem
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regime (Hare and Mantua, 2000), γr variance is the pooled variance for these mean

estimates, and the expectation for τ−2 is chosen to give some overlap between prior

PDO densities for each regime. During posterior Gibbs sampling, we are able to draw

directly from normal and gamma posterior distributions for γ and τ2 conditional on u

and h. Posterior samples of these parameters are shown in Figure 3.11.

Our analyses of the data, both with and without PDO as an external variable,

are based on MCMC runs of 30,000 iterations, with prediction after a burn-in of 5000

iterations. A truncation of L = 100 was used in the stick-breaking prior. The results

are presented in Figures 3.10 through 3.13. The posterior mean implied conditional

densities for each regime, evaluated over a 50×50 grid, are shown in Figure 3.10. These

act as a point estimate of the conditional relationship between stock and recruitment for

each regime. Figure 3.12 shows both the posterior mean for the state vector h, which

can be interpreted as the mean probability for inclusion of each year in the favorable

regime, and the posterior sample of mean regression functions for each regime, which

were sampled through equation (2.11). These Figures illustrate the ability of the models

to fit nonlinear curves and capture nonstandard features of the response distribution,

such as heavy tails and bimodality. In each figure, we see a clear separation between

the conditional densities corresponding to the two recruitment regimes. The impact of

inclusion of PDO as an external variable is also clearly evident. In the absence of such

information, the observations for years 1988-1991 are likely to be allocated in the favor-

able regime due to the rarity of regime shifting (i.e., due to posterior realizations of Q

which put a high probability on staying in the same state). However, given the inclusion
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Figure 3.9: Japanese sardine data (left) and draws from N(ar
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with favorable regime in grey.
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Figure 3.10: Japanese sardine data. Mean posterior conditional density surface, E[ f(
log(R/E) | log(E); Gr) | D], for each regime. The unfavorable regime is plotted on
the left and favorable on the right, while the top row corresponds to analysis from the
base model and the bottom row to the extended model including PDO as an external
covariate.
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Figure 3.12: Japanese sardine data. The posterior mean regime membership by year
is plotted on the left (zero = unfavorable), and the posterior mean regression samples
from Pr (E[ log(R/E) | log(E); Gr] |D ) for each regime are on the right (90% posterior
intervals are included within dashed lines for the favorable regime, and within dotted
lines for the unfavorable). The top row corresponds to analysis from the base model
and the bottom row to the extended model including PDO as an external covariate.
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of PDO in our model, these years are more probably associated with the unfavorable

regime. Also, posterior intervals for the mean regression curves corresponding to each

regime do not exclude the possibility of a linear mean relationship between log egg pro-

duction and log reproductive success. These last two points would indicate that we do

not have sufficient evidence to reject the original assumptions of Wada and Jacobson.

Finally, Figure 3.13 shows prediction for 1992, the year following the end of our

dataset, both with and without the inclusion of winter PDO as an external covariate.

Prediction for both the regime state hT+∆ and the conditional density f(log(R/E) |

log(E) ; GL
hT+∆

) in future years is possible conditional on each draw of the transition

matrix Q, the state hT , and the finite stick-breaking mixtures GL
1 and GL

2 . Poste-

rior mean estimates of f(log(R/E) | log(E) ; GL
h1992

) are shown on the left hand side

of figure 3.13 for modeling both with and without inclusion of PDO as an external

covariate (u1992 = 0.26). In addition, the data include egg production estimates for

the years 1992 to 1995 with log(E) = log(675) = 6.515 in 1992. Wada and Jacobson

found a recruitment estimate based on partial stock assessment for 1992 of R = 20591

(log(20591/675) ≈ 3.4), but they were unable to quantify uncertainty about this value.

We are able to show full posterior samples for the density f(y|x = log(675);Gh1992
). A

comparison of plots on the right hand side of Figure 3.13 shows the considerable change

in predicted response distribution (conditional on log(E) = 6.515 in 1992) from the

inclusion of winter PDO in the model. The mean posterior conditional uncertainty is

actually increased with the inclusion of PDO, as it is now more likely that the regime

state will be unfavorable in 1992 and there is little information from the data to inform
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the unfavorable regime regression curve around log(E) = 6.515. In each case, the right-

hand plots for prediction conditional on E = 675 illustrate the posterior variability of

the implied conditional density, and the quantification of this variability is an important

aspect of the fully nonparametric modeling.
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Figure 3.13: Japanese sardine data; prediction for 1992. The mean conditional density
E [f(log(R/E) | log( E ) ; Gh1992

) | D] is shown on the left and a posterior sample,
conditional on an egg count of 675, from Pr (f(log(R/E) | log(E) = 6.515; Gh1992

) |D )
is plotted on the right (the point estimate is shown as a solid line and dashed lines
contain a 90% posterior interval). The bottom plots correspond to analysis with the
inclusion of PDO as an external covariate, and prediction is conditional on a winter
average PDO of 0.26 in 1992.
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3.3 Regression for Survival Data

Survival data is characterized through realizations of random variables with

positive support. The data tends to be partially observed due to censoring, which

arises in a variety of different manners. Right censoring presents the most common

issue, and this occurs when the study of interest terminates while some of the observed

processes continue to survive. Left and interval censoring are also prevalent, especially

in the setting of clinical trials or when continuous lifetime processes are not observed

continuously.

Bayesian nonparametric modeling for survival data has an extensive history.

Indeed, much of the early inferential work in Bayesian nonparametrics was focused on

modeling with random priors over the space of survival functions. Susarla and Van

Ryzin (1976) presented one of the first DP-based approaches, and the work of Ferguson

and Phadia (1979) is an early example of inference through the use of more general

neutral-to-the-right process priors. More recent work has involved the use of Pólya

tree priors (Muliere and Walker, 1997) and beta-Stacy processes (Walker and Damien,

1998) to model the survival function, or DP mixture priors for the density function of

the survival distribution (Kottas, 2006). Other authors have investigated nonparametric

modeling through use of priors on the space of cumulative hazard functions (e.g., Hjort,

1990; Damien et al., 1996) or hazard functions (e.g., Nieto-Barajas and Walker, 2002).

We seek to develop a unified fully nonparametric framework (unified in that

all functionals of interest are available through a single inferential process for response
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densities) for multivariate survival data in the presence of a regression component. Pre-

vious Bayesian nonparametric work related to regression for survival data has generally

been limited to specification of nonparametric prior components within a parametric

regression model. In particular, many authors have considered semiparametric model-

ing for accelerated failure time models, typically assuming a parametric form for the

regression function conditional on a nonparametrically modeled additive error term. DP

priors form the basis for early work along this line by Johnson and Christensen (1989),

whereas DP mixture priors are utilized in the more recent work of Kuo and Mallick

(1997), Kottas and Gelfand (2001), Merrick et al. (2003), and Hanson (2006). Another

semiparametric approach arises through nonparametric hazard function estimation com-

bined with a parametric proportional hazards model for the effect of covariates. Gelfand

and Mallick (1995), Laud et al. (1998), Mallick and Walker (2003), and De Blasi and

Hjort (2007) describe model development in this spirit, while Hanson and Yang (2007)

present a related approach wherein the proportional hazards assumption is replaced by

a proportional odds restriction. Finally, Mallick et al. (1999) present a nonlinear hazard

regression model based on multivariate adaptive regression splines.

In contrast to these approaches, we obtain inference for survival and hazard

functions based upon fully nonparametric modeling for the conditional distribution for

survival responses given covariates. This section outlines a Bayesian nonparametric

framework, again based upon DP mixture joint covariate-response density estimation.

Distinguishing features of the proposed approach for survival regression include model

adjustments to handle censoring in the response as well as illustration of the general
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approach with multivariate responses. The general modeling framework will be pre-

sented in Section 3.3.1 and illustration of the methodology is presented through a data

example in Section 3.3.2. The example of this latter section involves interval, right,

and left censored bivariate response for a single binary covariate. Posterior simulation

details will be provided in the context of this example.

3.3.1 Model Development

As in previous sections, we propose an approach to the general regression

problem based on DP mixture modeling for the joint distribution of responses and

covariates. In this development, we will consider data corresponding to a multivariate

response Y = {Y1, . . . , Ydy
} with covariates X = {X1, . . . , Xdx

}. Each response

variable is assumed to have support on the positive real line and may be either fully

observed, interval censored, right censored, or left censored. Thus the data sets that

can be handled under the proposed modeling framework are of the form D = {xi =

(xi1, . . . , xidx
), zi = (zi1, . . . , zidy

): i = 1, . . . , n} with response j for observation i ∈ Ij
O

fully observed, i ∈ Ij
LC left censored, i ∈ Ij

RC right censored, and i ∈ Ij
IC interval

censored. Accordingly, zij = yij for i ∈ Ij
O and for censored observations, zij = (aij , bij)

such that yij ∈ (aij , bij) where aij = 0 for i ∈ Ij
LC and bij = ∞ for i ∈ Ij

RC .

The data generating probability density is modeled as a random mixture of

kernels, where the joint kernel for y and x is built through dy independent probability

densities for each response variable and a dx dimensional probability density (possibly

also a product of independent components) for x. The dy response kernel components
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may assume the form of any probability density with support over the positive real line.

Ibrahim et al. (2001) discuss multiple parametric models for univariate survival data,

including gamma, log-normal, and Weibull probability densities, and any of these may

be used to build the individual response kernel components. The kernel component for

x can be constructed according to the framework of Chapter 2, which contains guidance

for the modeling of both continuous and discrete covariates.

The Weibull density, kw(y; γ, λ) = λ−1γyγ−1 exp [−yγ/λ], is a very convenient

choice for the modeling of censored data due to the closed form of its cumulative dis-

tribution function (Kw(y; γ, λ) = 1 − exp [−yγ/λ]). Indeed, the Weibull is a standard

choice for parametric modeling of survival data. As such, we will use dy Weibull densi-

ties in construction of our joint covariate-response mixture kernel. Hence, the mixture

model is expressed as

x,y|G ∼
∫





dy
∏

j=1

kw(yj ; γj , λj)



 kx(x; θ)dG (Γ, Λ, θ)

G ∼ DP
(

α, Gy
0 (Γ, Λ; φ, ψ)Gx

0 (θ; ρ)
)

, (3.13)

where Γ = {γ1, . . . , γdy
} and Λ = {λ1, . . . , λdy

}. The centering distribution component

corresponding to the response vector is Gy
0 (Γ, Λ; φ, ψ) =

∏dy

j=1 Ga(γj ; cj , φj) Ga(λ−1
j ;

dj , ψj), with independent hyperpriors π(φj) = Ga(φj ; qj1, qj2) and π(ψj) = Ga(ψj ; sj1,

sj2) for j = 1, . . . , dy. The centering distribution Gx
0 (θ; ρ) may be specified, depending

upon the type of covariates, following the approach of Chapter 2. Finally, we assume

an independent Ga(aα, bα) prior for α.

Inference for the model of (3.13) will, of course, depend upon the partially
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observed zi rather than the fully observed yi. Due to the availability of closed form

Weibull distribution functions, this requires only a straightforward adaptation of the

simulation algorithms described elsewhere in this thesis (either the Pólya urn based

scheme of Chapter 2 or the stick-breaking blocked Gibbs of Section 3.2). We detail

in the following section the inference procedure for an example consisting of bivariate

response and a single binary covariate; the extension of this methodology to other sur-

vival regression settings should be clear. Posterior simulation will be based upon a finite

stick-breaking approximation to the DP, although a version of the Pólya urn scheme

could also be developed. Before turning to this example, we introduce some general as-

pects of the inference framework in the common context of a univariate response. In this

particular setting, the finite stick-breaking truncation of the DP prior (with truncation

level L) leads to the hierarchical model, where the relationship between the underlying

response yi and observed zi is as described above, for i = 1, . . . , n,

xi, yi|γ, λ, θ,k
ind∼ kw(yi; γki

, λki
)kx(xi; θki

) (3.14)

ki|p ∼
L

∑

l=1

plδ[l](ki)

p, γ, λ, θ|α, φ, ψ, ρ ∼ PL (p; Be(v; 1, α))

L
∏

l=1

dGy
0 (γl, λl; φ, ψ)dGx

0 (θl; ρ)

where γ = {γ1, . . . , γL}, λ = {λ1, . . . , λL}, θ = {θ1, . . . , θL}, the stick-breaking prior

PL(p; Be(v; 1, α)) is defined constructively as in equation (2.10), and the base measure

and hyperprior specification are described following (3.13).

Conditional on realizations of the truncated random mixing measure, GL =

{p, γ, λ, θ}, it is possible to sample any desired functional of the conditional density
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for response, which is itself available as

f(y|x; GL) =

∑L
l=1 plkw(y; γl, λl)kx(x; θl)

∑L
l=1 plkx(x; θl)

. (3.15)

In particular, conditional survival and hazard functions will be available. The survival

function, S(y|x; GL) = Pr(Y > y|x; GL) may be calculated at any (x, y) location as

S(y|x; GL) =

∑L
l=1 pl exp

[

−yγl

λl

]

kx(x; θl)
∑L

l=1 plkx(x; θl)
(3.16)

and the hazard function h(y|x; GL) = f(y|x; GL) / S(y|x; GL) is

h(y|x; GL) =

∑L
l=1 plkw(y; γl, λl)kx(x; θl)

∑L
l=1 pl exp

[

−yγl

λl

]

kx(x; θl)
. (3.17)

For examples with a multivariate response, the marginal survival and hazard

functions remain available in the same form as equations (3.16) and (3.17) respectively,

with the only change being that in inference for response j, γlj and λlj will replace γl

and λl. In the next section, we consider posterior simulation and inference for a data

example based on a version of the model consisting of bivariate response and a single

binary covariate.

3.3.2 Model Illustration with an AIDS Clinical Trial Data Example

This section focuses on data from an AIDS observational study conducted by

the AIDS clinical trial group (the ACTG), a National Institutes of Health-sponsored

multi-center initiative. The purpose of the ACTG 181 study, corresponding to the data

considered here, was to determine the natural history of the opportunistic infection

cytomeglovirus (CMV) in an HIV-infected individual. In ACTG 181, patients supplied
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urine and blood samples periodically over the duration of the study, and these were

tested for the presence (or shedding) of CMV. Although the sampling was scheduled to

occur at regular intervals (every 12 weeks for blood and every 4 weeks for urine), many

patients missed or moved their scheduled visits, such that the observed data is censored

to irregular intervals. Not all participants exhibited CMV shedding in blood or urine at

the study conclusion, resulting in right censoring. In addition, some patients exhibited

shedding in blood or urine at the time of their first visit, resulting in left censoring.

Goggins and Finkelstein (2000) consider the problem of regression for the blood

and urine shedding of patients in ACTG 181 conditional on an indicator variable related

to their CD4 cell counts. The stage of HIV infection is commonly classified by CD4

(cluster of differentiation 4, a protein found on a variety of different cells) count falling

below certain threshold, as this is an indication of immune system deterioration. In the

example considered by Goggins and Finkelstein (2000) and herein (as well as in Sun

(2006) in the context of classical nonparametric regression), a single binary covariate x

is set to one for patients with baseline CD4 count less than 75 cells per 10−6L, and zero

otherwise.

Thus the responses yB and yU , indicating time to CMV shedding in blood and

urine respectively, are observed as the intervals zB = (aB, bB) and zU = (aU , bU ), where

aj = 0 for left censored response j and bj = ∞ for right censored response j, with j

= U or B. Each observation is accompanied by the covariate x, indicating whether or

not CD4 count has fallen below the specified threshold. There are a total 204 patients

in the study. For blood shedding, 7 observations were left censored and 174 were right
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censored. For urine shedding, 50 observations were left censored and 87 were right

censored.

We model the joint density for responses and covariate as the DP mixture

specified by (3.13), where the covariate kernel component is a Bernoulli parameterized

by probability θ and the corresponding centering distribution is U(θ; 0, 1). Posterior

simulation and inference will be based upon a finite stick-breaking truncation of the DP

prior, such that the full hierarchical model is, with the relationship between yij and zij

described above, for i = 1, . . . , n = 204,

yiB, yiU , xi|Γ, Λ, θ,k
ind∼ kw(yiB; γkiB, λkiB)kw(yiU ; γkiU , λkiU )θxi

ki
(1 − θki

)1−xi

ki|p ∼
L

∑

l=1

plδ[l](ki) (3.18)

p,Γ, Λ, θ|α,φ, ψ ∼ PL (p; Be(v; 1, α))
L

∏

l=1

dGy
0 (Γl, Λl; φ, ψ)δ[θl∈(0,1)].

Here, Γl = {γlB, γlU} and Λl = {λlB, λlU}. The response base measure component

is specified as for the model defined in (3.13) and thereafter, such that Gy
0 = Ga(γB;

cB, φB) Ga(λ−1
B ; dB, ψB) Ga(γU ; cU , φU ) Ga(λ−1

U ; dU , ψU ). A Ga(2, 0.2) prior is

assumed for the precision parameter α. Prior and hyperprior specification is completed,

as elsewhere in this thesis, by considering the limiting case of the model as α → 0+

wherein the distribution corresponding to a single density kernel has generated all of

the observations. Hence, cB = cU = 2, dB = dU = 2, qB = qU = [2, 1], sB = [2, 2/20],

and sU = [2, 2/10].

Conditional on Γ, Λ, θ, and k, the data likelihood is L( Γ, Λ, θ, k | D) =
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∏n
i=1 Pr(zi | Γki

, Λki
) Pr(xi | θki

), where Pr(xi| θki
) = θxi

ki
(1 − θki

)1−xi and

Pr(zi|Γki
, Λki

) =

(

exp

[

−a
γkiB

iB

λkiB

]

− exp

[

−b
γkiB

iB

λkiB

]) (

exp

[

−a
γkiU

iU

λkiU

]

− exp

[

−b
γkiU

iU

λkiU

])

.

Thus, posterior sampling for this model is possible through a version of the blocked

Gibbs algorithm developed in Sections 3.2.3 and 4.2, with changes made only to adapt

for the censoring. Sampling for α and p is unchanged by the presence of partially

observed data. In particular, we can sample directly from the full conditional posterior

for p given k and α by drawing vl ∼ Be(1 + Hl, α +
∑L

j=l+1 Hj) for l = 1, . . . , L − 1,

where Hl =
∑n

i=1 δ[ki=l], before setting vL = 1, p1 = v1, and pl =
∏l−1

j=1(1 − vj)vl for

l = 2, . . . , L. The posterior full conditional for α is Ga(aα + L − 1, bα − log(pL)).

The independent posterior full conditional for each ki is proportional to
∑L

l=1

pl Pr(zi | Γl, Λl) Pr(xi | θl) δ[l](ki). The joint full conditional for the location parameters

is

Pr(Γ,Λ, θ|k,D) ∝
L

∏

l=1



dGy
0 (Γl, Λl; φ, ψ)

∏

i:ki=l

Pr(zi|Γl, Λl)θ
xi

l (1 − θl)
1−xi



 .

For l such that Hl = 0, the unallocated Γl, Λl, and θl are just sampled from the cen-

tering distribution. The independent posterior full conditional for each allocated θl is

Be(
∑

i:ki=l xi + 1, n − ∑

i:ki=l xi +1). Sampling for the n? allocated Γl and Λl proceeds

through conditional Metropolis-Hastings draws for each of γlj given λlj and λlj given γlj ,

for j = B, U . In the case of the full conditional draw for each λlj given γlj , this is facili-

tated by the use of independent proposal distributions built through an approximation

to Pr(zij |γkij , λkij) for left and interval censored observations. In particular, replacing

the true likelihood for such zij with kw(mij |γkij , λkij), where mij ∈ (aij , bij), leads to a
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Ga(nj
lIC + nj

lLC + dj , ψj +
∑

{i∈Ij
LC

∪Ij
IC

:ki=l}
m

γlj

ij +
∑

{i∈Ij
RC

:ki=l}
a

γlj

ij ) approximate

posterior full conditional for λlj given γlj and {zij : ki = l}, where nj
lIC and nj

lLC are

respectively the number of interval censored and left censored j responses allocated to

component l. Finally, the posterior full conditional for each φj is Ga(qj1 + n?cj , qj2

+
∑

l:Hl>0 γlj), and the posterior full conditional for each ψj is Ga(sj1 + n?dj , sj2 +

∑

l:Hl>0 λ−1
lj ).

The following results are based on an MCMC sample of 20,000 parameter

draws recorded on every fourth iteration following a burn-in period of 10,000 iterations.

Posterior mean and interval estimates for marginal survival and hazard functions, calcu-

lated as in equations (3.16) and (3.17), are shown in Figures 3.15 and 3.16 respectively.

The marginal hazard functions do not appear to be proportional, as was assumed in

Goggins and Finkelstein (2000), especially for CMV shedding in urine. This is more

pronounced in Figure 3.17, which shows posterior inference for the ratio of marginal

hazard functions (i.e. the marginal hazard for time yj conditional on CD4 count less

than 75 cells/10−6L, divided by the marginal hazard at the same time conditional on

CD4 count equal to or above that threshold). Due to heavy right censoring of the data,

we observe wide posterior uncertainty intervals around these marginal hazard ratios.

However, it does seem clear from Figure 3.15 that having a CD4 count of less than 75

cells/10−6L leads to significantly shorter time to CMV shedding, as there is little or no

overlap between the posterior interval for survival functions conditional on x = 0 (top

row) and conditional on x = 1 (bottom row). Finally, posterior mean bivariate density

functions for shedding in blood and urine, conditional on the binary CD4 indicator, are
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shown in Figure 3.18 and illustrate both the flexibility of our model and the potential

for multivariate inference. This figure indicates that CMV shedding times in blood and

urine are clearly correlated, as was found by Sun (2006) through the use of a bivariate

Copula model. We note, however, that an extension of this Copula model for regression

analysis requires an assumption of proportional hazards, which is unlikely to be true.
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Figure 3.14: AIDS clinical trial group data. Posterior samples for the number of distinct
clusters and the DP prior precision.
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Figure 3.15: AIDS clinical trial group data. Posterior mean (solid lines) and 90% interval
(dashed lines) for marginal survival functions S(yj |x; G) = Pr[Yj > yj |x; G] for CMV
shedding time (in weeks) for blood (left column) and urine (right column), conditional
on CD4 cells/10−6L ≥ 75 (top row) and CD4 < 75 cells/10−6L (bottom row).

83



0.
02

0.
06

0.
10

0.
14

5 15 25

0.
02

0.
06

0.
10

0.
14

blood shedding time
5 15 25

urine shedding time

Figure 3.16: AIDS clinical trial group data. Posterior mean (solid lines) and 90%
interval (dashed lines) for marginal hazard functions h(yj |x; G) = f(yj |x; G) / S(yj |x; G)
for CMV shedding time (in weeks) for blood (left column) and urine (right column),
conditional on CD4 cells/10−6L ≥ 75 (top row) and CD4 < 75 cells/10−6L (bottom
row).
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Figure 3.17: AIDS clinical trial group data. Posterior mean (solid lines) and 90% interval
(dashed lines) for the ratio of marginal hazard functions, h(yj |x = 1;G) / h(yj |x = 0;G)
for CMV shedding time (in weeks) for blood (left) and urine (right).
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Figure 3.18: AIDS clinical trial group data. Posterior mean for the bivariate conditional
response density for weeks to CMV shedding in blood and urine, f(yB, yU | x ; G),
conditional on CD4 cells/10−6L ≥ 75 (left) and CD4 < 75 cells/10−6L (right).
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Chapter 4

Modeling Framework for Dynamic

Spatial Marked Poisson Processes

This chapter proposes a general framework for modeling Poisson point pro-

cesses, through separation of the process intensity into a total intensity and a normal-

ized process density. The process density will be modeled nonparametrically via DP

mixture models with bounded kernels, and development of the model for marked pro-

cesses parallels our modeling for conditional distributions from previous chapters. The

framework builds on a basic model for nonhomogeneous Poisson processes described

by Kottas and Sansó (2007), generalizing the work to alternative kernel choices and

extending the framework to include temporal dynamics and random marks.

While the classical literature on point processes is extensive, fully Bayesian

work is much more limited. The book by Diggle (2003) contains a review of para-

metric likelihood and classical nonparametric inference approaches for spatial Poisson
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processes, and Møller and Waagepetersen (2004) serves as an excellent reference on

basic theory for Poisson point processes and, in addition, contains a review of more

recent work on simulation-based inference for spatial point processes. For more detailed

theoretical background on spatial Poisson processes, see, for instance, Cressie (1993),

Kingman (1993), and Daley and Vere-Jones (2003). The intensity histogram approach

outlined in Diggle (1985) provides an example of classical nonparametric process inten-

sity estimation.

Early examples of Bayesian nonparametric inference for spatial Poisson pro-

cesses can be found in Heikkinen and Arjas (1998, 1999), where piecewise constant

functions, driven by Voronoi tesselations and Markov random field priors, were used to

model the intensity function. A more common approach is to rely upon log-Gaussian

Cox process models (note that a Cox process is just a Poisson process with a random

intensity function, and thus the distinction is arguably irrelevant from a Bayesian per-

spective), wherein the random intensity function is modeled on logarithmic scale as a

Gaussian process. Møller et al. (1998) study properties of log-Gaussian Cox processes

and discuss empirical Bayesian inference for the intensity surface. Extensions to spatio-

temporal settings are considered in Brix and Diggle (2001) and Brix and Møller (2001).

The Bayesian nonparametric approaches developed by Wolpert and Ickstadt

(1998) and Ishwaran and James (2004) are closest in spirit to the work presented here.

Both of these approaches utilize a mixture representation for the intensity function

based upon a convolution of nonnegative kernels with a gamma process (or in the case

of Wolpert and Ickstadt (1998), any Levy random field). Applications to regression
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settings are discussed by Ickstadt and Wolpert (1999) and Best et al. (2000), and the

former reference provides a connection to modeling for marked processes through an

additive intensity formulation. Brix (1999) developed the related shot-noise G-Cox

processes model – a Cox processes with intensity built of kernel smoothed generalized

gamma measures – which includes the Poisson-gamma random field model as a special

case. Even more general related probability models for Cox processes are studied by

Møller (2003) and Møller and Torrisi (2005), though this work deals primarily with

probabilistic aspects of the spatial processes. Finally, there is a connection between the

gamma-process models and DP mixture models, due to the connection between the DP

and the gamma process (see Ferguson, 1973, 1974). However, the approach of Kottas

and Sansó (2007) and that presented herein differs in that the mixture representation

is used directly for the process density instead of process intensity.

4.1 Model Development

This section outlines the various models for Poisson processes underlying our

general framework. Posterior sampling methodology for a selection of fully specified

hierarchical models follows in Section 4.2 and illustrative data examples are presented

in Section 4.3.

4.1.1 Dirichlet Process Mixture Models for Poisson Processes

A non-homogeneous Poisson process PoP(R, λ) on a bounded observation win-

dow R ⊂ R
2, with intensity λ(y) for y ∈ R that is locally integrable for all bounded
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B ⊆ R, is defined such that

i. For any such B, the number of points in B, N(B) ∼ Po
(

Λ(B) =
∫

B λ(y)dy
)

.

ii. Given N(B), the points are iid with density λ(y)/Λ(B).

Although Poisson processes may be defined over an unbounded space, the observa-

tion window is almost always bounded and we refer throughout only to the spatial

processes as defined on the bounded observation window. When considering marked

processes, below, the observation window may be unbounded. Regardless, through a

reparameterization in terms of the density f(y) = λ(y)/Λ(R), inference about process

properties can be made through the use of density estimation methodology. For data

D = {y1, . . . ,yn} ∼ PoP(R, λ), if we set γ = Λ(R), the likelihood is

L(f, γ|D) ∝ exp (−γ) γn
n

∏

i=1

f(yi). (4.1)

The conjugate prior for γ is a gamma distribution and the improper reference

prior is π(γ) ∝ γ−1. Since the count, N(R), is sufficient for the integrated intensity, γ,

inference about this parameter is independent of estimation for f . Thus, the methodol-

ogy presented below will apply in the case of either reference or conjugate prior modeling

for γ.

DP mixture models are an attractive option for nonparametric estimation of

f . The model proposed by Kottas and Sansó (2007) holds that the normalized intensity

89



arises as a DP mixture of bivariate beta density kernels with Sarmanov dependence,

f(y) =

∫

B2(ỹ; µ, τ , ϕ)dG(µ, τ , ϕ),

B2(ỹ; µ, τ , ϕ) = Be(ỹ1; µ1τ1, (1 − µ1)τ1)Be(ỹ2; µ2τ2, (1 − µ2)τ2)r(ỹ, µ; ϕ)

G ∼ DP (α, G0(β)), (4.2)

where ỹ is the result of a mapping for y from a rectangular observation window R to the

unit square I = [0, 1]× [0, 1], and r(ỹ; µ, ϕ) = 1 + ϕ(ỹ1 − µ1) (ỹ2 − µ2). The centering

distribution is

G0(µ, τ , ϕ; β) =





∏

i=1,2

U (µi; 0, 1)Ga
(

τ−1
i ; cβ, βi

)



 U(ϕ; Cµ, Cµ) (4.3)

where U(· ; a, b) is the uniform distribution over (a, b), and Cµ = −[max{µ1µ2, (1 −

µ1)(1−µ2)}]−1 and Cµ = −[min{µ1(µ2−1), µ2(µ1−1)}]−1 are conditional bounds such

that r(ỹ, µ; ϕ) ≥ 0 for all ỹ ∈ I. Hyperpriors are such that α ∼ Ga(aα, bα) and π(β) =

Ga(β1; aβ, bβ) Ga(β2; aβ , bβ).

This suggests a more general family of models built through DP mixtures of

arbitrary kernels,

f(y) =

∫

k(y; θ)dG(θ), G ∼ DP (α, G0(ψ)) (4.4)

where support for k is bounded to the observation window R. The Sarmanov bivariate

beta mixture model is obviously of this sort, as is the related case with independent beta

kernel components such that k(y; θ) = Be(ỹ1; a1, b1)Be(ỹ2; a2, b2). The extra flexibility

of the bivariate B2 kernel is especially desirable when the process intensity is strong

near borders of the observation window.
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A further generalization of this approach is to allow the support for k to be

restricted to subsets of the observation window, where the random mixing distribution

for θ places positive prior probability on the support including the entire window. This

will allow for discontinuities in the intensity surface. For example, if the spatial surface

is expected to include aerial units with relatively uniform properties, the kernel could

be built as the product of uniform densities such that,

f(y) =

∫

U(y1; l1, u1)U(y2; l2, u2)dG(l,u) (4.5)

with G ∼ DP(α,U2(l1, u1; a1, b1)U2(l2, u2; a2, b2)), where a1 is the western boundary

for R, b1 is the eastern boundary, a2 is the southern boundary, b2 is the northern

boundary, and U2(u, l; a, b) denotes a uniform distribution over the triangle a < l <

u < b. Posterior simulation for this model will not be considered in detail, however it

is straightforward to devise an MCMC algorithm built around algorithm 5 from Neal

(2000) with sampling for truncated G, as in Section 2.4 for the multivariate normal

DP mixture model (realizations from U2 are easily drawn through rejection sampling).

This model is loosely connected to the univariate “random histograms” proposed by

Gasparini (1996) and outlined in Ghosh and Ramamoorthi (2003), but in that semi-

parametric model the uniform width of the histogram bins is modeled parametrically

and the DP prior is assumed only for bin probabilities. In addition, Brunner and Lo

(1989) proposed DP mixtures of uniform densities in estimation of symmetric unimodal

densities, however this only involved mixing on upper (or lower) bounds of intervals

between zero and a parameter θ (or −θ) for θ ∈ (0,∞). A perhaps closer connection
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exists between the model of (4.5) and mixtures of Pólya tree priors (see, e.g., Lavine,

1992; Walker et al., 1999), as in each case a finite version of the model (i.e. for truncated

G or for partially specified Pólya trees) leads to realized measures on the set of interest

consisting of random probabilities assigned to axisymmetric intervals of random width.

Before moving to models for marked and dynamic Poisson processes, we re-

visit the use of kernels restricted to rectangular support. Although the issue is seldom

addressed in the modeling literature, in practice it is not uncommon to encounter ob-

servation windows which are not rectangular. Due to the flexibility of the DP mixture

approach to modeling f , a large sample size will lead to inference that is practically

unaffected by conveniently increasing the modeled observation window to a rectangle

containing the true window. The process density fit accounts for the lack of points

outside of the true window by assigning to those areas a density value very near to zero.

However, when this simplification is unacceptable, it is possible to adapt our modeling

framework to account for a nonrectangular observation window.

One approach is to define a one-to-one transformation of variables which maps

from the irregular observation window to a rectangular region, allowing for process den-

sity to be modeled over the transformed space through use of a kernel with rectangular

support. A standard approach to such problems is to search for a conformal mapping

(i.e. a transformation which preserves angles between vectors). Trefethen (1980) de-

scribes numerical computation of the Schwarz-Christoffel transformation between an

arbitrary polynomial and the unit disc (implemented in the Fortran package SCPACK

and available in MATLAB), and Trefethen (1984) applies the technique in a composition of
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transformations for conformal mapping between arbitrary polynomials and a rectangle.

The transformations themselves are evaluated analytically, as it is only the coefficients

of the Schwarz-Christoffel transformation which are estimated numerically, such that

the Jacobian is available and the posterior f density realizations can be transformed

back to the original observation window. However, this approach should be undertaken

with care to ensure that the spatial dependence structure in the transformed space does

not lead to unreasonable densities in the original observation window. And, of course,

any prior intuition about the process density must be translated to the transformed

coordinate system.

An obvious alternative is to simply use kernels which are bounded to the

nonrectangular observation window. If the kernel k is defined with support over a

larger rectangle W that includes all of the nonrectangular R, the process density may

be specified through the truncated kernel model f(y) =
∫

kR(y; θ) dG(θ) where kR(y; θ)

= k(y; θ) δ[y∈R] / (1−
∫

W/R k(s; θ) ds). Model fitting will be able to follow many of the

same steps as outlined below for kernels with rectangular support, except that numerical

integration of the normalizing constant is required for kernel evaluation at every new

θ value. This computational complexity is avoided if one is able to construct a kernel

which is analytically bounded to the irregular support. In particular, the DP mixture of

uniform densities in (4.5) lends itself to such constructions. The process density model
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may be re-stated for arbitrary R as

f(y) =

∫

δ[y∈(l,u)∩R]

A [(l,u) ∩R]
dG(l,u),

G ∼ DP (α,U2(l1, u1; a1, b1)U2(l2, u2; a2, b2)) , (4.6)

where a1 is the western-most point on the boundary of R, b1 is the eastern-most point,

a2 is the southern-most point, b2 is the northern-most point, (l,u) is the interior of the

rectangle defined by l and u and A [(l,u) ∩R] is the area of intersection between (l,u)

and the observation window.

4.1.2 Marked Spatial Poisson Processes

A marked Poisson process consists of points from a spatial Poisson point pro-

cess, y ∼ PoP(R, φ), and a random mark m at each location drawn from the conditional

distribution Pr(m|y). If a PoP(R×M, λ) process defined over the joint location-mark

observation window is such that
∫

M λ(y, m)dm = φ(y) is locally integrable, then the

joint process is such a marked process. We make use of this property of Poisson pro-

cesses to model marked processes and, as a result, model the conditional distribution

for marks. Define a process over the joint location-mark space with intensity function

λ(y, m) = γ

∫

ky(y; θy)km(m; θm)dG(θy, θm) = γf(y, m; G), (4.7)
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where γ =
∫

R

∫

M λ(y, m)dmdy and the mark kernel km(m; θm) has support on M.

Then, due to the almost sure discreteness of G,

∫

M
λ(y, m)dm = γ

∫

M

∫

θy

ky(y; θy)

∫

θm

km(m; θm)dG(θy, θm)dm

= γ

∫

θy

ky(y; θy)

∫

θm

[∫

M
km(m; θm)dm

]

dG(θy, θm) (4.8)

= γ

∫

θy

ky(y; θy)dG(θy) = γf(y; G) = φ(y).

Since γ =
∫

R

∫

M λ(y, m)dmdy =
∫

R φ(y)dy, we have recovered the original

DP mixture model of Section 4.1.1 for the marginal location Poisson point process

PoP(R, φ). The conditional distribution for marks is thus

Pr(m|y; G) =
f(y, m; G)

f(y; G)
=

∫

ky(y; θy)km(m; θm)dG(θ)
∫

ky(y; θy)dG(θ)
. (4.9)

Note that, through an argument analogous to that of (4.8), the marginal mark

intensity defined as
∫

R λ(y, m)dy is locally integrable. This, combined with the fact

that conditional on G, λ(y, m) = φ(y) Pr(m|y), implies that our DP mixture joint

location-mark process of (4.7) satisfies the requirements of proposition 3.9 in Møller

and Waagepetersen (2004) and hence the marks alone are marginally distributed as a

Poisson process PoP
(

M,
∫

R λ(y, m)dy
)

.

Assuming a Sarmanov bivariate beta kernel for the location process, all that

remains is to specify the independent kernel for marks. In modeling for categorical

marks, the multinomial kernel is a straightforward option which, due to the flexibility

of the DP mixture model, will be appropriate for a wide variety of applications. In this

case, for mark space M = {1, 2, . . . , M}, the PoP(R×M, λ) process is defined through
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a hierarchical model for the intensity function,

λ(y, m) = γ

∫

B2(y; µ, τ , ϕ)qmdG(µ, τ , ϕ, Q)

G ∼ DP
(

α, Gy
0 (µ, τ , ϕ; β)Dir(Q;a)

)

, (4.10)

where Gy
0 and π(β) are defined as in the location process specification of (4.3) and

thereafter, Q = [q1, . . . , qM ] and Dir(Q;a) is the Dirichlet distribution such that E(qm|a)

= am/
∑M

i=1 ai. It is possible to place a hyperprior on the parameter vector a (e.g.

Leonard, 1977), but in many cases this can simply be fixed to the prior expectation of

unconditional mark proportions.

Similarly, continuous marks can be modeled through an appropriate choice

for the independent mark kernel. In the case of real-valued continuous marks (i.e.

M = R), the choice of a normal density kernel leads to the intensity function λ(y, m) =

γ
∫

B2(y; µ, τ , ϕ)N(m; q1, q2)dG(µ, τ , ϕ,q). In the more common case of positive con-

tinuous marks (i.e. M = R
+), a lognormal density mark kernel leads to the full model

λ(y, m) = γ

∫

B2(y; µ, τ , ϕ)N(log(m); q1, q2)dG(µ, τ , ϕ, q1, q2)

G ∼ DP
(

α, Gy
0 (µ, τ , ϕ; β)N(q1; s1, s2)Ga(q−1

2 ; s4, s3)
)

. (4.11)

The gamma density provides an alternative kernel component for positive continuous

marks (for example, in the case when m is a wait time or distance to travel).

4.1.3 Dynamic Poisson Processes

In many situations, realizations from spatial point processes will be observed

repeatedly at discrete time intervals. In such cases, the temporal dependence between
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realized point patterns needs to be accounted for in the modeling framework. One

possible approach would be to model the combined set of points as a Poisson process

over both space and time (and possibly the mark support). However, when spatial

patterns are observed after discrete time intervals, it will usually be more natural to

make explicit the temporal dependence of the spatial process through modeling of a

time-dependent intensity function λt.

In our modeling framework, the intensity function is built as the product of in-

tegrated intensity, γ =
∫

R λ(y)dy, and a density function, f(y) =
∫

k(y; θ)dG(θ), which

arises as a random mixture of bounded kernels with support in the observation window

R. In order to account for temporal dependence, both the integrated intensity and

the process density will become functions over the discrete timeframe T = {1, . . . , T}.

The dynamic integrated intensity, {γt : t = 1, . . . , T}, forms a univariate time series

and can be approached with parametric time series methodology; we will return to this

in Section 4.1.4. Temporal dependence for ft will be introduced via dynamic mod-

eling for the random mixing distribution, such that ft(y) =
∫

k(y; θ)dGt(θ). This is

achieved through the use of dependent Dirichlet process (DDP) priors, as introduced in

the technical report by MacEachern (2000).

DDP priors are prevalent in the Bayesian nonparametrics literature, and have

been used to model random measures which are related in space (Gelfand et al., 2005)

and over categorical covariates (de Iorio et al., 2004), among other applications. The

original specification of MacEachern’s DDP is based upon the stick-breaking charac-

terization of the DP. In the context of time dependent random measures, the general
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model formulation holds that the set of random measures corresponding to time points

in T , G = {G1, . . . , GT }, collectively distributed as a DDP
(

ST (v; α), GT
0 (θ; ψ)

)

, are

realized in the form

Gt =
∞

∑

l=1

pl,tδθl,t
for t ∈ T , (4.12)

where p1,t = v1,t and pl,t = vl,t

l−1
∏

i=1

(1 − vi,t), for l = 2, . . . ,∞.

The stick-breaking proportions vl = {vl,1, . . . , vl,T } and the locations θl = {θl,1, . . . ,

θl,T } are respectively iid realizations over the indices in T from the finite dimensional

distributions ST (v; α) parameterized by α and GT
0 (θ; ψ) parameterized by ψ. The

finite dimensional distributions for both v and θ are induced by measurable stochastic

processes indexed by time. Note that the temporal dependence is only specified at

the level of the random measures rather than at the observation level, and thus in the

absence of further modeling constraints we have conditional independence such that

Pr(θ1, . . . , θT ) =
∏T

t=1

∑∞
l=1 pl,tδθl,t

(θt).

Alternative approaches for the modeling of dependent random measures in-

clude the order-based dependent DP of Griffin and Steel (2006), which allows for

the ordering of the stick-breaking proportions to be correlated across related pop-

ulations, and the kernel stick-breaking process of Dunson and Park (2008), which

builds a dependence upon covariates into the Pólya urn posterior predictive distri-

bution that would result from a standard DP. The generalized spatial Dirichlet pro-

cess of Duan et al. (2007) presents a multivariate stick-breaking process that can be

viewed as an extension of the standard full DDP. In the context of discrete time de-
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pendence, the generalized spatial DP allows for observation vectors to be correlated

across time conditional on a realized set of random distributions G1, . . . , GT , such that

Pr(θ1, . . . , θT ) =
∑∞

l1=1 . . .
∑∞

lT =1 pl1...lT δθl1,1
(θ1) . . . δθlT ,T

(θT ). Although the general-

ized prior is attractively flexible and has many very nice properties, inference about this

model is relatively computationally intensive and, in many cases, the extra flexibility of

the prior will be unnecessary.

Existing applications of the DDP have focused on the simplified single-p version

wherein the stick-breaking proportions are assumed constant over the index set, such

that vl = vl. Hence, members of the set of random measures, G, collectively distributed

as a single-p DDP
(

α, GT
0 (θ; ψ)

)

, are realized in the form Gt =
∑∞

l=1 plδθl,t
where p1 = v1

and pl = vl
∏l−1

i=1 vi for l = 2, . . . ,∞, with locations θl = {θl,1, . . . , θl,T } constructed as

above for (4.12) and the vl drawn iid from a Be(1, α) distribution. The simplification

of constant stick-breaking proportions allows for substantially more tractable posterior

simulation, and in many applications the flexibility of the single-p version is more than

adequate. The spatial DP of Gelfand et al. (2005) is an example of the single-p DDP

where GT
0 (θ; ψ) is induced by a Gaussian process. Note that, in this case, the simplified

model provides a clear way to impose dependence over the index set at the observation

level, such that Pr(θ1, . . . , θT ) =
∑∞

l=1 plδθ1
l
(θ1) . . . δθT

l
(θT ) =

∑∞
l=1 plδθl

(θ).

The single-p DDP in the context of discrete-time dependent Poisson processes

would have G ∼ DDP
(

α, GT
0 (θ; ψ)

)

for the resultant dynamic process density, ft(y) =

∫

k(y; θ)dGt(θ). For the Sarmanov bivariate beta mixture model, where k(y; θ) = B2(y;
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µ, τ , ϕ), a possible prior formulation for G = {G1, . . . , GT } would have

G ∼ DDP (α, G0(µ, ϕ,T = {τ 1, . . . , τT }; β, ψ)) (4.13)

G0(µ, ϕ,T; β, ψ) = δ[0<µ1,µ2<1]U(ϕ; Cµ, Cµ)S(T; ψ),

with Cµ, Cµ, and hyperpriors for β defined as for (4.3) above. The finite dimensional

distribution S(T; ψ) is induced by a bivariate temporal process for τ with realizations on

R
+; for example, the logarithm of two standard dynamic linear models. Thus, the cen-

tering distribution is the product of a T dimensional distribution for T = {τ 1, . . . , τT }

and a distribution that is constant in time for µ and ϕ. Following in the spirit of

the spatial DP, prior realizations of the joint distribution G would be of the form

G =
∑∞

l=1 plδθl
, where the θl = {µl, ϕl,Tl} are iid realizations from the distribution

G0(µ, ϕ,T; β, ψ). Alternatively, one may define a single-p DDP such that the mixing

measure for µ varies in time while τ and ϕ remain constant, or even have all parameters

modeled dynamically. A related time-dependent single-p DDP model, for the estimation

of densities which evolve in discrete time, has been recently introduced by Rodriguez and

ter Horst (2008). In this formulation, the random mixing measure for kernel location

parameters is distributed as a DP with centering distribution provided by a dynamic

linear model with normal error components.

Instead of following the single-p DDP route for our modeling of dynamic Pois-

son processes, we look to the alternative single-θ simplification of the DDP, wherein

the realized locations θl,t are assumed to be constant in time, such that θl = θl.

Hence, members of the set of random measures, G, collectively distributed as a single-
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θ DDP(ST (v; α), G0(ψ)), are realized in the form Gt =
∑∞

l=1 pl,tδθl
where the θl are

iid draws from G0(θ; ψ) and the pl,t are constructively defined as in (4.12) through iid

sample path realizations of the stick-breaking proportions vl = {vl,1, . . . , vl,T } from the

finite dimensional distribution ST (v; α) induced by a measurable stochastic processes

on (0, 1) indexed by time.

In analogy to MacEachern’s development of the single-p model, it is necessary

to argue that the restriction to constant θ locations has not reduced the support of the

prior distribution. This is the minimum requirement of any nonparametric prior.

Proposition Assume that G ∼ DDP (ST (v; α), G0(ψ)), with T = t1, . . . , tT a set of

distinct points in either a countable set or an open set in R
+ (i.e. either discrete or

continuous time domain) and ST (v; α) the corresponding finite dimensional distribution

induced by a measurable stochastic process S over this domain. If S has support (0, 1)T

and the distributions G1, . . . , GT are each absolutely continuous with respect to G0(ψ),

then for any ε > 0 and for any t ∈ {t1, . . . , tT }, with θε denoting the ε-neighborhood of

θ, the set of distributions {G : G(θ) ≤ Gt(θ
ε)+ε ∀ θ ∈ Θ} (i.e. within the Lévy distance

ε of Gt), has positive probability under the single-θ DDP prior for G.

Proof. We consider the case where Θ, the σ-field over which G0 is defined, consists of the

Borel sets generated by the intervals of (w.l.o.g.) R
p. The corresponding proof for cate-

gorical θ is a more straightforward version of this argument. First, for each t = t1, . . . , tT ,

we can construct a discrete approximation to the probability measure defined by Gt:

say Ct = [−ct, ct]
p such that PrGt(Ct) > 1 − ε/4 and ct is a multiple of ε/4, and define
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hypercubes (open to the southwest) {Qt,1, . . . , Qt,N} with side-length ε/4 which cover

Ct (such that N = (8ct/ε)p). Then the measure Ht defined by assigning mass PrGt(Qt,i)

to the midpoint, qt,i, of each hypercube is such that Ht(θ) ≤ Gt(θ
ε
2 ) + ε/2 ∀ θ ∈ Θ.

Second, we show that members of a set of measures assigned positive prior probability

will each be suitably close to the discrete approximation Ht. For each t, the distribu-

tions Ft ∈ Ft are built by assigning appropriate mass to a finite sequence of locations,

θ? = {θ?
1, . . . , θ

?
n}, which can be re-numbered as {θ0,1, . . . , θ0,n0

, . . . , θN,1, . . . , θN,nN
}

such that {θj,1, . . . , θj,nj
} ⊂ Qt,j for j = 0, . . . , N and

∑N
j=0 nj = n, with Qt,0 = Θ \ Ct.

Since Gt << G0, any such sequence has positive probability as an iid draw from G0

(i.e. as a finite subset of an infinite iid sequence). Indeed, assume that θ? arises during

the location-sequence part of the stick-breaking single-θ DDP construction and was pre-

ceded by an arbitrarily large n<t locations (i.e. enough locations to allow for a similar

construction of distributions arbitrarily close to G1, . . . , Gt−1). Now, since S(v; α) has

full support over (0, 1)T , the event 0 < vl,t < δ0 < 1 has positive prior probability for

each l ≤ n<t, where δ0 has been chosen such that vl,t < δ0 for l = 1, . . . , n<t guarantees

∑n<t

l=1 pl,t =
∑n<t

l=1

[

vl,t
∏l−1

i=1 vi,t

]

< ε/8. Similarly, the event 0 < δL < vl,t < δU < 1 for

l = n<t, . . . , n<t + n has positive prior probability where δL, δU , and each nj have been

chosen together to ensure that |∑nj

i=1 pi,j − PrGt(Qt,j)| < ε/4N for j = 0, . . . , N . The

distribution Ft ∈ Ft built by assigning mass pi,j to each location θi,j is then such that

Ft(θ) ≤ Ht(θ
ε
2 ) + ε/2 ∀ θ ∈ Θ, and the triangle inequality implies our final result.

Note that this proof is a straightforward adaptation of the argument used by
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MacEachern (2000) to show full support under the stated weak topology for the full

DDP. Also note that the restriction of support (0, 1)T for S can be weakened to require

only ∃δ ∈ (0, 1] such that every interval in the region less than δ has positive prior

mass at each time t. Thus the only extra condition (over the full DDP) for full prior

support of the single-θ DDP is that each Gt is absolutely continuous with respect to

the single distribution G0. Finally, the argument uses the construction of practically

independent random measures to show full support for each individual Gt. The prior

will obviously be much more efficient in representation of correlated random measures,

but it is interesting to note that this limiting case of near independence between the Gt

is not possible under the single-p DDP (think about the positive probability of a large

point mass at any single location; this structure must be represented in each correlated

random measure).

The motivation for our use of single-θ processes is both practical and con-

ceptual. As for the single-p DDP, simplification of the full DDP leads to considerably

more straightforward posterior sampling without unduly restricting the flexibility of the

model. The single-θ model also leads to a practical modeling advantage over single-p

version: since the stochastic process underlying the temporal dynamics of the random

measure is restricted to only the stick-breaking proportions, it is only ever necessary

to specify a univariate time series on (0, 1). This is especially attractive in the context

of more complex mixture kernels. The model of (4.13) requires specification of only a

two dimensional time series, however this is achieved by restricting some kernel com-

ponents to be held constant in time. And in the model proposed by (4.5), the uniform
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base measure does not lend itself easily to a dynamic extension. For non-rectangular

observation windows and for the modeling of marked processes, the kernel complexity

may need to increase considerably and it becomes much more difficult to specify the

stochastic process underlying GT
0 (θ; ψ). In contrast, a carefully designed process for

stick-breaking proportions may be used in a variety of different applications concerning

both marked and unmarked processes. In situations where the restriction of the single-

θ process is not sufficiently flexible to efficiently model the process dynamics (e.g., if

the conditional mark distribution is governed by different dynamics than the underly-

ing location point process), it may be possible to adapt the model incrementally by

introducing time dependence in the random mixing distribution for individual kernel

parameters whose behavior is not adequately modeled. The resultant full DDP would

have a centering distribution that is constant over time for some parameters and dy-

namic for other parameters, analogous to the structure of the centering distribution in

(4.13); however, the dynamic stick-breaking proportions will allow the realized measures

for all parameters to evolve in time.

In Bayesian nonparametric modeling, a wide variety of models will be able to

adapt to capture similar behavior. The distinction between models is thus based largely

on the practical ease of implementation and the efficiency with which a model is able to

capture the data behavior. In addition to the practical benefits of the single-θ process,

there are potentially inherent aspects of point processes for which it is uniquely well

suited and thus lead to its increased efficiency over alternative priors. In modeling for

spatial Poisson processes, it is often the case that the shape of the major spatial factors
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affecting process intensity, such as geographical features or socio-economic variables,

remains constant over the time period covered by T . Hence, the temporal intensity

variability is largely limited to relative changes in intensity across roughly defined aerial

units. As an illustration, in our motivating example of crime event data, the neighbor-

hood structure of Cincinnati remains constant throughout the year. Hence, intensity

dynamics are caused by crime increasing or decreasing in entire neighborhoods due to

external factors such as increased police presence or sporting events. The single-θ model

provides an efficient representation for such behavior through a dynamic re-weighting

of static kernels.

The finite dimensional distribution ST (v; α) is determined through specifica-

tion of a stochastic process on the open unit interval. There are numerous different pos-

sible approaches for the modeling of such time series of proportions. The most common

frameworks are based upon a transformation of a real-valued time series. For example,

any normal dynamic linear model can, through either a logit or probit transformation, be

expressed as a time series of proportions (see, e.g., Cargnoni et al., 1997). Our proposed

Poisson DLM model for monthly integrated intensity, presented in Section 4.1.4, is an

example of methodology in this spirit (albeit with respect to a log transform). There are,

however, reasons why these models are inappropriate in the context of stick-breaking

proportions. It is not usually possible to specify a transformation which will lead to beta

distribution marginals for each vl,t. Although this is not a theoretical constraint, beta

marginals for the proportions at each time point lead to marginal beta process priors for

the Gt and allow the modeler to make use of existing work related to these models (e.g.,
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Ishwaran and Zarepour, 2000) in hyperprior specification and interpretation. More im-

portantly, the standard transformations lead to autocorrelation functions for successive

proportions that vary dramatically throughout the unit-interval. In particular, for both

logit and probit transformations of normal AR processes, proportions near zero or one

are much more highly correlated with the successive proportions than for proportions

closer to 0.5. This behavior is especially undesirable for ST (v; α), as the possibility for

θl components that are heavily weighted at one time point to become insignificant later

is a key aspect of efficient prior full support.

One possible option would be to apply the power discount steady state model

introduced by Smith (1979). A scheme for time series with exponential family observa-

tion distributions, this results in filtering and forecasting equations analogous to those of

Kalman filtering. Indeed, Grunwald et al. (1993) specify a time series model on the sim-

plex with Dirichlet marginal distributions through use of this approach. In our context

of univariate proportions, a simple version of the model could be specified with observa-

tion equation Pr(vt|ωt, κ) = Be(vt; ωtκ, (1−ωt)κ) and evolution such that Pr(ωt+1 = ω

| vt
1) =

[

Pr(ωt = ω|vt
1)

]δ
= [BeC(ω; αt, κ, σt)]

δ, where the beta conjugate distribution

BeC(ω ; α, κ, σ) is proportional to exp {σ (κωα − log[β(ωκ, (1 − ω)κ)])} and here β de-

notes the beta function. Although filtering and forecasting are straightforward for this

model (σt+1 = 1 + δσt and αt+1 = [δαt + logit(vt)] /[1 + δ]), it is difficult to combine

with the binomial likelihood for the vl,t in posterior sampling and the necessary pro-

cess smoothing is computationally expensive. The framework of Grunwald et al. (1993)

does, however, allow for the inclusion of external covariates and seasonal factors and
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this model could provide a basis in the future for more complicated single-θ DDP prior

models.

Our chosen approach is to model the time series of stick-breaking proportions

as stationary positively correlated beta autoregressive processes (PBAR; introduced by

McKenzie, 1985). The PBAR(Vt|Vt−1; a, b, ρ) process evolution is defined

Vt = 1 − Ut(1 − WtVt−1) where Ut ∼ Be(b, a − ρ), Wt ∼ Be(ρ, a − ρ), (4.14)

with each Ut and Wt independent, for a and b positive and 0 < ρ < a. The autocorre-

lation for a PBAR(a, b, ρ) process is

r(k) = (E[W ]E[U ])k =

(

bρ

a(a + b − ρ)

)k

, (4.15)

such that, as a function of ρ, r(1) is strictly increasing and has a range of the entire

unit interval. Note that the PBAR process is stationary: if Vt−1 ∼ Be(a, b), then

WtVt−1 ∼ Be(ρ, a + b − ρ) ⇒ 1 − WtVt−1 ∼ Be(a + b − ρ, ρ)

⇒ Ut(1 − WtVt−1) ∼ Be(b, a) ⇒ 1 − Ut(1 − WtVt−1) ∼ Be(a, b). (4.16)

Thus if we specify ST (v; α) = PBAR(v; 1, α, ρ) as the T dimensional distribution in-

duced by PBAR evolution as in (4.14) and the assumption that vl,1
iid∼ Be(1, α) for

l = 1, . . . ,∞, then each vl,t is marginally iid distributed Be(1, α) and the marginal prior

for each Gt is DP(α, G0(ψ)). For this process parameterization, with a = 1 and b = α

and 0 < ρ < 1, the autocorrelation of (4.15) simplifies to r(k) = [ρα/(1 + α − ρ)]k.
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The single-θ DDP mixture model based upon this process is

ft(y) =

∫

k(y; θ)dGt(θ), for t = 1, . . . , T

G ∼ DDP(PBAR(v; 1, α, ρ), G0(ψ)). (4.17)

A PBAR prior specification for stick-breaking proportions offers flexible sample paths

from a simple stationary process, easily accessible beta marginal distributions, and a

clear correlation structure. For these reasons, we have adopted PBAR as the default

form for S in all that follows.

4.1.4 Time Series Modeling for Integrated Poisson Intensity

We now turn to address parametric modeling for the integrated Poisson inten-

sity γ = γT
1 = [γ1, . . . , γT ], where γt =

∫

Z λt(z)dz for either Z = R or Z = R × M

corresponding to unmarked or marked processes respectively. Recall that integrated

Poisson intensity is independent of the process density in the likelihood (refer to (4.1)),

such that the event counts n = nT
1 = {n1, . . . , nT } are the sufficient statistics for γ.

Thus, nt given γt is distributed Po(nt; γt) for t = 1, . . . , T and the count vector n is

viewed as a time series of Poisson random variables correlated through the mean vector.

In modeling for non-normal time series, a basic approach is to apply a variant of

the steady state power discount scheme proposed by Smith (1979) (refer to Section 4.1.3

for discussion of this model in the context of correlated beta random variables). Assum-

ing that each nt given γt is conditionally independent of the other counts and distributed

Po(nt; γt), the power discount time series for marginally Poisson distributed count data
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is specified through the state equation Pr(γt = γ | nt−1
1 ) ∝

[

Pr(γt−1 = γ|nt−1
1 )

]δ
and

the initial information π(γ0) = Ga(γ0 ; κ0, η0), where δ ∈ (0, 1) is the power discount

factor. If Pr(γt−1 = γ | nt−1
1 ) = Ga(γ; κt−1, ηt−1), then Pr(γt = γ | nt−1

1 ) = Ga(γ; δκt−1

− δ + 1, δηt−1) and the recursive filtering equation for Pr(γt|nt
1) holds that Po(nt; γt)

Pr(γt | nt−1
1 ) ∝ γ

nt+δκt−1−δ
t exp [−(1 + δηt−1)γt], such that κt = nt + δκt−1 − δ + 1 and

ηt = 1 + δηt−1. The forecast distribution for nt+1 given nt
1 is straightforward to obtain

as a negative binomial.

Our focus is largely on smoothing the time series; that is, obtaining the prob-

ability distribution for γ given n. Recursive backwards sampling equations for this

model are found through the assumption of conditional independence between γt and

nT
t+1 given γt+1, and between γt+1 and nt

1 given γt, such that Pr(γt|nT
1 , γt+1) is equal

to Pr(γt | γt+1, nt
1) ∝ Pr(γt | nt

1) Pr(γt+1 | γt). The density Pr(γt|nt
1) is gamma, with

parameters specified as above. Following the approach taken in Wheeler (2001), if we

assume that the evolution Pr(γt+1 | γt) depends only on the discount δ and the distance

γt+1 − γt, then Pr(γt+1 | γt) = hδ(γt+1 − γt) where hδ is defined such that Ga(γt+1 ;

κt, ηt) =
∫ ∞
0 hδ(γt+1 − γt) Ga(γt ; κt, ηt)dγt. Thus, backwards sampling is possible

through repeated solution of a simple convolution integral equation.

The power discount scheme is appealingly simple, but it is not amenable to

the introduction of more structured stochastic elements such as polynomial or peri-

odic trends. Furthermore, due to the need for numerical evaluation of a convolution

equation, smoothing for the model is relatively expensive and this negates much of

the computational efficiency gained through accessible forward filtering equations. We
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thus concentrate on an alternative modeling framework provided through conditionally

Gaussian dynamic linear models (DLM), as proposed by Cargnoni et al. (1997) in the

context of multinomial time series. The conditionally Gaussian DLM can itself be seen

as an extension of the generalized DLM proposed by West et al. (1985), and both ap-

proaches seek to extend the powerful DLM framework beyond marginally Gaussian time

series data.

In our context of a time series for Poisson distributed count data, we propose

the conditionally Gaussian constant DLM, denoted PoDLM(n, γ; {F, G, κ, W}),

Observation Equation : nt|γt ∼ Po(nt; γt)

Structural Equation : log(γt) = F′ηt + εt, εt ∼ N(0, κ)

State Equation : ηt = Gηt−1 + ωt, ωt ∼ N(0, W )

Initial Information : η0 ∼ N(m0, C0),

where η is the r × 1 state vector, F is the r × 1 design vector, and G is a r × r

evolution matrix. There is huge flexibility in specification of the model through changes

to {F, G, κ, W}, and in non-constant models any element may be allowed to vary in time

(refer to West and Harrison, 1997, for a complete treatment of DLM model specification

and design). We discuss a simple 2nd order polynomial/seasonal model in Section 4.2.4

below.

Conditional on log(γ), κ, and W , the structural and state equations above

specify a standard dynamic linear model with known variance components. Thus, con-

ditional sampling for η = {η1, . . . , ηT } is a straightforward application of the forward-
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filtering, backward-sampling algorithm proposed by Frühwirth-Schnatter (1994) and

Carter and Kohn (1994). Full conditional posterior distributions for κ and W are avail-

able directly with the use of conditionally conjugate priors (or through use of a discount

factor specification for W ). Finally, sampling for the posterior γ given n, η, and κ,

requires a simple Metropolis-Hastings step. Full details for this posterior simulation

procedure are provided in Section 4.2.4.

4.2 Model Specification and Posterior Simulation

In this section we present detailed model specification under the framework of

Section 4.1 for various types of Poisson processes, accompanied by MCMC algorithms

for posterior simulation based on a finite stick-breaking truncation of the prior. For

simplicity of notation, we assume throughout that R = (0, 1)× (0, 1) (i.e. y = ỹ in the

notation of Section 4.1.1 ). Illustration of these models follows in the data examples of

Section 4.3.

In specification of prior and hyperprior parameters for each model, the general

guidelines are unchanged from the discussion in Section 2.2. Recall that, under this

approach, DP prior specification arises from consideration of a simplified model with

a single kernel serving as the process density (i.e., the limiting case of a generic DP

mixture model as α → 0+). The data analysis of Section 4.3 includes particular ex-

amples of model parameterization which follow from this approach. In addition, prior

parameterization issues unique to the modeling of dynamic processes are discussed in
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the example of Section 4.3.3.

4.2.1 Nonhomogeneous Spatial Poisson Processes

We assume that the data D = {y1, . . . ,yn} form a pattern of point events

that are randomly distributed throughout R. This spatial point pattern is modeled as

a realization from PoP(R, λ), such that the intensity function is λ(y) = γf(y), where

π(γ) ∝ γ−1 and the prior for f(y) is specified as in (4.2) and thereafter.

Model 1

{y1, . . . ,yn} | γ, f ∼ PoP (R, γf(y))

π(γ) ∝ γ−1 and f(y; G) =

∫

B2(y; µ, τ , ϕ)dG(µ, τ , ϕ)

G|α,β ∼ DP (α, Gy
0 (µ, τ , ϕ; β))

Gy
0 (µ, τ , ϕ; β) =

∏

i=1,2

U (µi; 0, 1)Ga
(

τ−1
i ; cβ, βi

)

U(ϕ; Cµ, Cµ)

where Cµ = −[max{µ1µ2, (1−µ1)(1−µ2)}]−1, Cµ = −[min{µ1(µ2 − 1), µ2(µ1 − 1)}]−1,

π(α) = Ga(α; aα, bα), and π(β) = Ga(β1; aβ, bβ)Ga(β2; aβ, bβ).

4.2.1.1 MCMC Posterior Simulation

First, the integrated intensity γ has posterior density Ga(n, 1) independent of

f . This holds true for all of the models specified in this chapter, save for the dynamic

Poisson process model of Section 4.2.4 where we apply the conditionally Gaussian DLM

methodology of Section 4.1.4.

Turning to posterior sampling for f , all of the MCMC simulation algorithms

presented in this chapter are based upon a finite stick-breaking approximation to the
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infinite dimensional DP distributed random mixing distribution, G. Sampling then pro-

ceeds through an extended version of the blocked Gibbs algorithm described in Section

(3.2.3). As a result of this truncation, we will not in practice have an infinite dimen-

sional, fully nonparametric, prior for the random mixing measure. However, the mod-

eling is entirely motivated by the nonparametric prior framework, and may be used in

conjunction with a level of finite truncation which ensures that the resultant inference is

practically indistinguishable from that which would result from the infinite dimensional

prior model. Obviously, the reduction of an infinite dimensional parameter space to a

finite one will lead to more efficient posterior sampling. But more importantly, any in-

ference about Poisson intensity integrated over a subregion of R relies upon a truncated

approximation to G, regardless of the method used to simulate process parameters, and

modeling based upon such finite truncation throughout provides a more consistent ap-

proach to inference. Thus, the framework depends upon a very high-dimensional prior

model which is motivated by an infinite dimensional process.

In the context of Model 1, the hierarchical specification for f(y; G) and for

G is replaced by

yi|ϑ,k ∼ B2

(

yi; ϑki
=

[

µki
, τ ki

, ϕki

])

ki|p ∼
L

∑

l=1

plδ[l](ki), for i = 1, . . . , n

p, ϑ|α,β ∼ PL (p; Be(v; 1, α))
L

∏

l=1

dGy
0 (ϑl; β)

where the stick-breaking prior PL (p; Be(v; 1, α)) is defined constructively as in equation

(2.10).
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Introducing the variable Hl =
∑n

i=1 δ[ki=l], representing the number of data

observations allocated to each mixture component, the set of kernel parameters, ϑ =

{ϑ1, . . . , ϑL}, is then partitioned into two subsets. The first, ϑ? = {ϑl : Hl > 0},

includes the n? parameters that are allocated to data observations and the complement

of this subset, ϑu = {ϑl : Hl = 0}, includes the nu unallocated parameters such that

n? +nu = n and ϑ? ∩ϑu = ∅. Introduce the index vector k? such that observation yi is

allocated to component ϑ?
k?

i
. Then sampling from the posterior full conditional for ϑ,

Pr (ϑ|k, β,D) ∝
n?
∏

j=1



dG0(ϑ
?
j ; β)

∏

i:k?
i =j

B2(yi; ϑ
?
j )





nu
∏

j=1

dG0(ϑ
u
j ; β), (4.18)

is possible through independent draws of each ϑu
j ∼ G0(ϑ

u
j ; β), for j = 1, . . . , nu, and

from Pr(ϑ?
j |k, β,D) ∝ dG0(ϑ

?
j ; β)

∏

i:k?
i =j B2(yi; ϑ

?
j ), for j = 1, . . . , n?.

Independent draws for each ϑ?
j from this latter distribution will be broken into

two full conditional draws. First, draw each (µ?
j , ϕ

?
j ) from

Pr(µ?
j , ϕ

?
j |τ ?

j ,k,D) ∝
∏

i:k?
i =j

B2(yi; µ
?
j , τ

?
j , ϕ

?
j )

1

Cµ?
j − Cµ?

j

(4.19)

by proposing µ′ ∼ gµ(µ′; µ?
j ), where g is symmetric such that g(µ′; µ?

j ) = gµ(µ?
j ; µ

′),

followed by a proposal ρ′ ∼ U(Cµ′

, Cµ′). The MCMC move (µ?
j , ϕ

?
j ) → (µ′, ϕ′) is

then accepted with probability max
{

1,
∏

i:k?
i =j B2(yi; µ

′, τ ?
j , ϕ

′)/B2(yi; µ
?
j , τ

?
j , ϕ

?
j )

}

. A

suitable option for gµ is to use independent PBAR(µ′
i|µ?

j,i; 1, 1, ρµ) for each of i = 1, 2

as a symmetric proposal scheme over the unit square (i.e. draw U ∼ Be(1, 1 − ρµ) and

W ∼ Be(ρµ, 1 − ρµ) and set µ′
i = 1 − U(1 − Wµ?

j,i)); recall that the PBAR process is
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time-reversible. The next full conditional draw, for each τ ?
j from

Pr(τ ?
j |µ?

j , ϕ
?
j ,k, β,D) ∝

∏

i:k?
i =j

B2(yi; µ
?
j , τ

?
j , ϕ

?
j )Ga(τ?−1

j1 ; cβ, β1)Ga(τ?−1
j2 ; cβ, β2),(4.20)

proceeds with a proposed move to τ ′ ∼ gτ(τ ′; τ ?
j ), where gτ is symmetric such that

gτ(τ ′; τ ?
j ) = gτ(τ ?

j ; τ
′), which is then accepted with probability

max







1,
∏

i:k?
i =j

[

B2(yi; µ
?
j , τ

′, ϕ?
j )

B2(yi; µ?
j , τ

?
j , ϕ

?
j )

]

Ga(τ ′−1
1 ; c, β1)Ga(τ ′−1

2 ; c, β2)

Ga(τ?−1
j1 ; c, β1)Ga(τ?−1

j2 ; c, β2)







.

We use gτ(τ ′; τ ?
j ) defined such that log(τ ′−1

i ) ∼ N(log(τ?−1
ji ), σ2

τ ) for each of i = 1, 2.

The draw for k conditional on ϑ, p, and D is straightforward, since for i =

1, . . . , n, each ki is independently distributed Pr (ki = j|ϑ,p,yi) ∝ ∑L
l=1 pl B2(yi; ϑl)

δl(j). Finally, by conjugacy of the stick-breaking prior to multinomial sampling and the

fact that p is conditionally independent of the data given k (see Ishwaran and James

(2001) and refer to the relevant discussion in Section 3.2.3), we can sample directly from

the conditional posterior for p given k and α by drawing vl ∼ Be(1+Hl, α+
∑L

j=l+1 Hj)

for l = 1, . . . , L−1, where Hl is (as above) the number of observations allocated to kernel

parameter component ϑl, before setting vL = 1, p1 = v1, and pl =
∏l−1

j=1(1 − vj)vl for

l = 2, . . . , L.

Direct sampling from full conditional posterior distributions is possible for each

of the hyperparameters α and β. As outlined in Ishwaran and Zarepour (2000) and in

Section 3.2.3, α is independent from k and ϑ given p and, following from the general-

ized Dirichlet density representation in Connor and Mosimann (1969) for random vari-

ables drawn from a finite stick-breaking prior, Pr(α | p) ∝ αL−1 pα−1
L π(α) ∝ αaα+L−2

exp [α log(pL) − αbα], such that α given p is sampled from Ga(aα + L − 1, bα − log(pL)).
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The draw for β is facilitated by noticing that since, as seen in (4.18), the unallocated

ϑu have just been drawn from G0(β), the conditional joint posterior for {β, ϑ} can be

marginalized over ϑu to obtain the full conditional posterior for β,

Pr(β|τ ?, n?) ∝ π(β)
n?
∏

j=1

Ga(τ?−1
j1 ; cβ, β1)Ga(τ?−1

j2 ; cβ, β2), (4.21)

such that each βi is drawn independently from a Ga(n?cβ + aβ ,
∑n?

j=1 τ?−1
ji + bβ) distri-

bution.

4.2.2 Spatial Poisson Processes with Categorical Marks

We assume that the data D = {(y1, m1), . . . , (yn, mn)} form a pattern of point

events distributed throughout R and accompanied by random marks with support M

= {1, . . . , M}. This spatial point pattern is modeled as a realization from the joint

location-mark Poisson process PoP(R×M, λ), with joint intensity such that λ(y, m) =

γf(y, m), where the marginal intensity for location is modeled as above in Section 4.2.1

and the mark kernel is a multinomial density. Again, π(γ) ∝ γ−1 and the posterior for

γ is Ga(n, 1).

Model 2

{(y1, m1), . . . , (yn, mn)} | γ, f ∼ PoP (R×M, γf(y, m)) , π(γ) ∝ γ−1

f(y, m; G) =

∫

B2(y; µ, τ , ϕ)qmdG(µ, τ , ϕ, Q)

G(µ, τ , ϕ, Q) ∼ DP
(

α, Gy
0 (µ, τ , ϕ; β)Dir(Q;aq)

)

where Gy
0 and π(α,β) are defined as for Model 1, Q = [q1, . . . , qM ] and aq = { aq

1, . . . ,

aq
M} is fixed.
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4.2.2.1 MCMC Posterior Simulation

The finite stick-breaking truncation for this model is obtained by replacing the

hierarchical specification for f(y, m; G) and for G with

yi, mi|ϑ,Q,k ∼ B2 (yi; ϑki
) qkimi

ki|p ∼
L

∑

l=1

plδ[l](ki), for i = 1, . . . , n

p, ϑ,Q|α,β ∼ PL (p; Be(v; 1, α))
L

∏

l=1

dGy
0 (ϑl; β)Dir(Ql;a

q),

where ϑ is as in Section 4.2.1 and Q = {Q1, . . . , QL} with Ql = [ql1, . . . , qlM ].

The MCMC posterior simulation algorithm is very similar to that outlined in

4.2.1.1. Due to independence of the kernel components, Q is conditionally independent

of ϑ given k. Defining Q? = {Ql : Hl > 0} and Qu = {Ql : Hl = 0} in analogue to ϑ?

and ϑu from Section 4.2.1, the full conditional joint posterior for ϑ and Q given k and

D is obtained through multiplication of (4.18) by

n?
∏

j=1



Dir(Q?
j ;a

q)
∏

i:k?
i =j

q?
jmi





nu
∏

j=1

Dir(Qu
j ;aq), (4.22)

Thus, full conditional posterior sampling for ϑ and Q resolves into independent draws

from the full conditional posterior for ϑ, exactly as described in Section 4.2.1.1, and

a draw for Q proportional to (4.22). In this latter draw, the conditional indepen-

dence structure of (4.18) remains intact such that we can sample each Qu
j and Q?

j

independently. From (4.22), we see that Qu
j

iid∼ Dir(Qu
j ;aq) for j = 1, . . . , nu and that

the full conditional posterior for each Q?
j , j = 1, . . . , n?, is Dir(Q?

j ;a
q + sj), where

sj,r =
∑

i:k?
i =j δ[mi=r], for r = 1, . . . , M , is the number of components allocated to Q?

j
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with mi = r.

Sampling of k is structurally unchanged from the procedure for unmarked

processes, and for i = 1, . . . , n, each ki is independently distributed Pr = (ki = j| ϑ, Q,

p, yi, mi) ∝
∑L

l=1 pl B2(yi; ϑl)qlmi
δl(j). The posterior full conditional distributions of

the remaining parameter vector, p, and the hyperparameters, α and β, are unchanged

by the introduction of marks and may be sampled exactly as in Section 4.2.1.1.

4.2.3 Spatial Poisson Processes with Positive Continuous Marks

We assume that the data D = {(y1, m1), . . . , (yn, mn)} form a pattern of

point events distributed throughout R and accompanied by random marks with support

M = R
+. Model specification follows closely that of Section 4.2.2. Again, the spatial

point pattern is modeled as a realization from the joint location-mark Poisson process

PoP(R × M, λ), with joint intensity such that λ(y, m) = γf(y, m). The marginal

intensity for location is modeled as above in Section 4.2.1, but now the mark kernel is

a log-normal density. As above, π(γ) ∝ γ−1 and the posterior for γ is Ga(n, 1).

Model 3

{(y1, m1), . . . , (yn, mn)} | γ, f ∼ PoP (R×M, γf(y, m)) π(γ) ∝ γ−1

f(y, m; G) =

∫

B2(y; µ, τ , ϕ)N(log(m); q1, q2)dG (µ, τ , ϕ, Q)

G(µ, τ , ϕ, Q) ∼ DP
(

α, Gy
0 (µ, τ , ϕ; β)N(q1; s1, s2)Ga(q−1

2 ; s4, s3)
)

where Gy
0 and π(α,β) are defined as for Model 1, Q = [q1, q2], π(s1) = N(s1; a1, b1),

π(s−1
2 ) = Ga(s2; a2, b2), π(s3) = Ga(s3; a3, b3), and s4 is fixed.
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4.2.3.1 MCMC Posterior Simulation

The finite stick-breaking truncation for this model is obtained by replacing the

hierarchical specification for f(y, m; G) and for G with

yi, mi|ϑ,Q,k ∼ B2 (yi; ϑki
)N(log(mi); qki1, qki2)

ki|p ∼
L

∑

l=1

plδ[l](ki), for i = 1, . . . , n

p, ϑ,Q|α,β, s ∼ PL (p; Be(v; 1, α))
L

∏

l=1

dGy
0 (ϑl; β)N(ql1; s1, s2)Ga(q−1

l2 ; s4, s3),

where ϑ is as in Section 4.2.1, and Q = {Q1, . . . , QL} with Ql = [ql1, ql2].

MCMC posterior simulation is developed following the same approach taken in

Section 4.2.2.1 to extend the algorithm from Section 4.2.1.1. Now, the full conditional

joint posterior for ϑ and Q given k, β, s, and D is obtained through multiplication of

(4.18) by

n?
∏

j=1



N(q?
j1; s1, s2)Ga(q?−1

j2 ; s4, s3)
∏

i:k?
i =j

N(log(mi); q
?
j1, q

?
j2)





·
nu
∏

j=1

N(qu
j1; s1, s2)Ga(qu−1

j2 ; s4, s3) (4.23)

after partitioning Q into allocated Q? and unallocated Qu. The location kernel pa-

rameters, ϑ, can be sampled as in Section 4.2.1.1, and the unallocated Qu are sampled

through iid draws of [qu
j1, q

u
j2] from N(qu

j1; s1, s2)Ga(qu−1
j2 ; s4, s3) for j = 1, . . . , nu. For

j = 1, . . . , n?, the independent posterior full conditional for each [q?
j1, q

?
j2] is propor-

tional to N(q?
j1; s1, s2) Ga(q?−1

j2 ; s4, s3)
∏

i:k?
i =j N(log(mi); q

?
j1, q

?
j2). This leads to two
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conditional draws

q?
j1|q?

j2, {mi : k?
i = j} ∼ N

(

q?
j1; Dj

[

ψ1

ψ2
+

Ej

q?
j2

]

, Dj

)

(4.24)

q?−1
j2 |q?

j1, {mi : k?
i = j} ∼ Ga



q?−1
j2 ; s4 +

H?
j

2
, s3 +

1

2

∑

i:k?
i =j

(log(mi) − q?
j1)

2





where Dj =
[

s−1
2 + H?

j q?−1
j2

]−1
, Ej =

∑

i:k?
i =j log(mi), and H?

j is the number of obser-

vations allocated to Q?
j .

For i = 1, . . . , n, each ki is independently distributed Pr (ki = j|ϑ,Q,p,yi, mi)

∝ ∑L
l=1 pl B2(yi; ϑl)N(log(mi); ql1, ql2) δl(j). As in Section 4.2.2, the posterior full

conditional distributions of the remaining parameter vector, p, and the hyperparame-

ters, α and β, are unchanged by the introduction of marks and may be sampled ex-

actly as in Section 4.2.1.1. Finally, since the unallocated Qu have just been drawn

from N(qu
1 ; s1, s2)Ga(qu−1

2 ; s4, s3), the the conditional joint posterior for {s,Q} may be

marginalized over Qu to obtain the full conditional posterior for s,

Pr(s|Q?, n?) ∝ π(s)
n?
∏

j=1

N(q?
j1; s1, s2)Ga(q?−1

j2 ; s4, s3). (4.25)

Thus s is sampled through three conditional draws

s1|s2,q1
?, n? ∼ N

(

s1; Ds

[

a1

b1
+

Es

s2

]

, Ds

)

s−1
2 |s1,q2

?, n? ∼ Ga



s−1
2 ; a2 +

n?

2
, b2 +

1

2

n?
∑

j=1

(q?
j1 − s1)



 (4.26)

s3|q2
?, n? ∼ Ga



s3; a3 + n?s4, b3 +
n?
∑

j=1

q?−1
j2





where Ds =
[

b−1
1 + n?s−1

2

]−1
and Es =

∑n?

j=1 q?
j1.
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4.2.4 Dynamic Discrete Time Spatial Poisson Processes

Our basic model for dynamic Poisson processes (both marked and unmarked)

invokes a single-θ DDP extension of the static models above. Thus, the canonical model

holds that the data D = {(z1
1, . . . , z

1
n1

), . . . , (zT
1 , . . . , zT

nT
)} consisting of T point patterns

realized on the observation window (possibly including mark support) Z and observed

over time indices t ∈ T = {1, . . . , T}, are the realization of a dynamic Poisson process

PoP(Z, γf(z)) = { PoP (Z, γ1f1(z)) , . . . , PoP (Z, γT fT (z)) }, where γ is modeled as in

Section 4.1.4 as a conditionally Gaussian DLM and the prior for process densities, ft, is

a single-θ DDP extension of the appropriate DP mixture model for z (one of the models

in Sections 4.2.1, 4.2.2, and 4.2.3 above). We specify here the most basic model, for a

dynamic unmarked nonhomogeneous Poisson process observed in discrete time.

Model 4

{yt
1, . . . ,y

t
nt
} | γt, ft

ind∼ PoP (R, γtft(y)) for t = 1, . . . , T

γ ∼ DLM(log(γ); {F, G, κ, W}) and f(y; Gt) =

∫

B2(y; µ, τ , ϕ)dGt(µ, τ , ϕ)

G ∼ DDP
(

PBAR(v; 1, α, ρ), Gy
0 (µ, τ , ϕ; β)

)

where G = {G1, . . . , Gt}, Gy
0 and π(β) are defined as for Model 1, π(α) = Ga(α; aα, bα),

and π(ρ) = U(ρ; 0, 1). Recall that PBAR(v; 1, α, ρ) is the finite dimensional distribution

for v = [v1, . . . , vT ] induced by a PBAR(1, α, ρ) process over the indices in T . DLM(

·; {F, G, κ, W}) refers to the standard normal DLM, such that the implied model for

n is the conditionally Gaussian Poisson DLM specified in Section 4.1.4. Thus, log(γt)

∼ N(F′ηt, κ) where ηt ∼ N(Gηt−1, W ). The first variance component is assigned prior
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π(κ) = Ga(κ−1; aκ, bκ). The prior for W must reflect the (usually block diagonal)

structure of G, and the conditionally conjugate form is inverse Wishart. Alternatively,

and this is the approach utilized below, the system variance may be implied through the

use of a discount factor, δ ∈ [.9, .99], such that var[ηt|γt−1
1 ] = var[Gηt−1|γt−1

1 ]/δ (refer

to West and Harrison, 1997, for a complete account of the discount factor approach

to DLM modeling). Specification is completed with a prior for the initial state vector,

π(η0) = N(m0,C0).

4.2.4.1 MCMC Posterior Simulation

We first describe posterior simulation for parameters related to the process

density, f , with methodology corresponding to the Poisson DLM prior for n and γ to

follow. The finite stick-breaking truncation of Model 4 is obtained by replacing the

hierarchical specification for f(y, m; G) and for G with

yt
i|ϑ,kt

ind∼ B2(y
t
i; µkt,i

, τ kt,i
, ϕkt,i

) for i = 1, . . . , nt, t = 1, . . . , T

kt,i|P ind∼
L

∑

l=1

pl,tδ[l](kt,i), for i = 1, . . . , nt, t = 1, . . . , T

ϑl|β iid∼ Gy
0 (ϑl; β) for l = 1, . . . , L

P|α, ρ ∼ PL (P; PBAR(v; 1, α, ρ))

where the multivariate stick-breaking prior PL (P; PBAR(v; 1, α, ρ)) for P = {p1, . . . ,

pL} is defined constructively such that v1, . . . ,vL−1
iid∼ PBAR(v; 1, α, ρ), vL = 1, p1 =

v1, and for l = 2, . . . , L; t ∈ T : pl,t =
∏l−1

j=1(1 − vj,t)vl,t.

After relabeling {(y1
1, . . . ,y

1
n1

), . . . , (yT
1 , . . . ,yT

nT
)} as {y?

1, . . . ,y
?
nT

} where n1+
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. . .+nT = nT , partitioning ϑ into allocated ϑ? and unallocated ϑu as in Section 4.2.1.1,

and defining k? such that y?
i given {ϑ?,k?} is distributed B2(y

?
i ; ϑ

?
k?

i
), sampling from

the posterior full conditional for ϑ follows exactly the same procedure as in Section

4.2.1.1. The posterior full conditional draw for β given ϑ? is also unchanged. The

draw for {kt : t ∈ T } is straightforward since for i = 1, . . . , nt; t = 1, . . . , T , each kt,i

is independently distributed Pr
(

kt,i = j|ϑ,P,yt
i

)

∝ ∑L
l=1 pl,t B2(y

t
i; ϑl) δl(j). All that

remains for parameters related to the ft is to sample from the posterior full conditional

for P, Pr(P| {k1, . . . , kT }, α, ρ), and from Pr(α, ρ |P).

With respect to the posterior full conditional for P, the sufficient statistic is

the L by T matrix h, where hl,t is the number of data observations at time t allocated

to mixture component ϑl (hence,
∑L

l=1 hl,t = nt). The draw for P is then

Pr(P|h, α, ρ) ∝
T

∏

t=1

[

L
∏

l=1

(vl,t)
hl,t(1 − vl,t)

PL
i=l+1 hi,t

]

L
∏

l=1

PBAR(vl; 1, α, ρ)

∝
L

∏

l=1

[

PBAR(vl; 1, α, ρ)
T

∏

t=1

Bin

(

hl,t;
L

∑

i=l

hi,t, vl,t

)]

(4.27)

∝
L

∏

l=1

Pr(vl|{hl,t, . . . , hL,t : t ∈ T }, α, ρ),

where Bin(· ; n, p) denotes a binomial distribution with mean np, such that the prior

independence between vi and vj for i 6= j is maintained in the conditional posterior.

We define the variable L? = L − 1 if
∑T

t=1 hL,t 6= 0, otherwise set L? =

inf
{

l ∈ 1, . . . , L − 1 :
∑L

i=l+1

∑T
t=1 hi,t = 0

}

. Then the vectors vl for L? < l < L are

simply drawn from the PBAR(vl ; 1, α, ρ) prior (vL is a vector of ones). For l =

1, . . . , L?, the draw from each Pr(vl|{hl,t, . . . , hL,t : t ∈ T }, α, ρ) proceeds through
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forward-filtering and backwards-sampling based on sequential Monte Carlo techniques.

Forward filtering of the likelihood, to obtain Pr(vl,T | {hl,t, . . . , hL,t : t ∈ T }, α, ρ),

is possible with particle filtering. A wide ranging discussion of such methodology is

available in Doucet et al. (2001). We present a basic approach here, making use of

the bootstrap filter variation of sequential importance sampling. The smoothing step,

recursive sampling for Pr(vl,t|vl,t+1, {hl,t, . . . , hL,t : t ∈ T }, α, ρ) for t = T − 1, . . . , 1,

is then possible through application of the particle smoothing algorithm for nonlinear

time series described in Godsill et al. (2004). Thus, for l = 1, . . . , L?, proceed as follows.

Filtering

• Sample ṽ1,1, . . . , ṽ1,C iid from Pr(vl,1|{hl,1, . . . , hL,1}, α, ρ) = Be(1 + hl,1, α +

∑

i>l hi,1

)

(recall the conjugacy of the generalized Dirichlet discussed in Section

3.2.3), and set ω1,1, . . . , ω1,C equal to 1/C.

• For t = 2, . . . , T :

- Resample ṽt−1,i1 , . . . , ṽt−1,iC iid with replacement from ṽt−1,1, . . . , ṽt−1,C with

sampling probabilities Pr(ṽt−1,i) = ωt−1,i.

- For j = 1, . . . , C, draw ṽt,j ∼ PBAR(ṽt,j |ṽt−1,ij ; 1, α, ρ) (i.e., draw U ∼ Be(α, 1−

ρ) and W ∼ Be(ρ, 1 − ρ) and set ṽt,j = 1 − U(1 − Wṽt−1,ij )) and set weights

ωt,j ∝ Bin(hl,t;
∑

i≥l hi,t, ṽt,j).

Smoothing

• Sample vl,T from ṽT,1, . . . , ṽT,C with probabilities ωT,1, . . . , ωT,C .

• For t = T − 1, . . . , 1, draw vl,t from ṽt,1, . . . , ṽt,C such that Pr(vl,t = ṽt,i) =
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ωt|t+1,i, where ωt|t+1,i ∝ ωt,iPBAR(vl,t+1|ṽt,i; 1, α, ρ), and the evolution density is

PBAR(vt+1|vt; 1, α, ρ)

=

∫ min
n

1,
vt+1

vt

o

0

1

1 − wvt
Be

(

1 − vt+1

1 − wvt
; α, 1 − ρ

)

Be (w; ρ, 1 − ρ) dw (4.28)

=

∫ min
n

1,
1−vt+1

1−vt

o

1−vt+1

1

uvt
Be

(

u + vt+1 − 1

uvt
; ρ, 1 − ρ

)

Be (u; α, 1 − ρ) du. (4.29)

Evaluation of the conditional density thus requires numerical integration. Since the in-

tegrands in both (4.28) and (4.29) tend to infinity at the bounds of integration, adaptive

quadrature methods were found to be unstable. However, straightforward Monte Carlo

has proven to be quite successful in practice. A sequence in either w or u is randomly

sampled from Be(w; ρ, 1 − ρ) or Be(u; α, 1 − ρ) respectively, and the average of the

remainder of the respective integrand evaluated over this sequence is used as an estimate

of the integral. A preliminary sample of both w and u can be used to decide which of

(4.28) or (4.29) produces a less variable estimator.

Sampling for the PBAR hyperparameters α and ρ conditional on P (or the

untransformed V = {v1, . . . , vL} ) proceeds through a Metropolis Hastings step. First,

as described above, vL?+1, . . . , vL have just been sampled from the PBAR(1, α, ρ) prior.

Hence, the joint posterior for {V, α, ρ} may be marginalized over these values to obtain

the posterior full conditional, Pr(α, ρ | v1, . . . ,vL?)

∝ U(ρ; 0, 1)Ga(α; aα, bα)
L?
∏

l=1

[

Be(vl,1|1, α)
T

∏

t=2

PBAR(vl,t|vl,t−1; 1, α, ρ)

]

∝ Pr(α|vl,1, . . . , vL?,1)U(ρ; 0, 1)
T

∏

t=2

L?
∏

l=1

PBAR(vl,t|vl,t−1; 1, α, ρ), (4.30)
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where Pr(α|vl,1, . . . , vL?,1) = Ga
(

L? + aα, bα + log
(

∏L?

l=1(1 − vl,1)
))

= Ga(aα + L?,

bα + log(pL?+1,1/vL?+1,1)). Also, note that since the PBAR is a time reversible process,

PBAR(ρ′|ρ; a, b, r) = PBAR(ρ|ρ′; a, b, r) presents a symmetric proposal distribution for

ρ on the unit interval. Thus a Metropolis-Hastings draw for (4.30), given the current

state of the MCMC at (α, ρ), proceeds by proposing α′ from Ga(α′; aα + L?, bα +

log(pL?+1,1 / vL?+1,1)), ρ′ from PBAR(ρ′|ρ; 1, 1, r), and accepting a move from (α, ρ) to

(α′, ρ′) with probability set to

min

{

1,

∏T
t=2

∏L?

l=1 PBAR(vl,t|vl,t−1; 1, α′, ρ′)
∏T

t=2

∏L?

l=1 PBAR(vl,t|vl,t−1; 1, α, ρ)

}

. (4.31)

Note that the denominator of the acceptance probability has already been calculated

during the draw for P.

Finally, we detail the MCMC algorithm for sampling γ and the related prior

and hyperprior parameters. In this, we largely follow the procedure outlined by Cargnoni

et al. (1997), adapted for a Poisson observation equation. Conditional on the Poisson

means γ, the model specifies a standard normal DLM with log(γT
1 ) = {log(γ1), . . . ,

log(γT )} as observations. First, conditional on κ and γ and with fixed δ (the discount

factor through which the system variance is implicitly defined), we sample the state

vector η through use of the forward-filtering, backward sampling algorithm (Carter and

Kohn, 1994; Frühwirth-Schnatter, 1994).

• For t = 1, . . . , T , compute Pr(ηt| log(γt
1), κ, δ) = N(ηt; mt, Ct) through direct appli-

cation of the sequential updating equations for a normal DLM (West and Harrison,

1997, chap. 4). In detail, with at = Gmt−1; Rt = GCt−1G
′/δ; Qt = F′RtF + κ;
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and At = RtFQ−1
t ; mt = at + At [log(γt) − F′at] and Ct = Rt − AtQtA

′
t.

• Sample ηT ∼ N(mT , CT ).

• For t = T − 1, . . . , 0, sample ηt from Pr(ηt| ηt+1, log(γT
1 ), κ, δ) ∝ N(ηt ; mt,

Ct) Pr(ηt+1|κ, δ), which is also a normal distribution, with moments as speci-

fied in West (1995). In detail, Pr(ηt| ηt+1, log(γT
1 ), κ, δ) = N(ηt; mt + Bt(ηt+1

−at+1), Ct − BtRt+1R
′
t), where Bt = CtGR−1

t+1.

The posterior full conditional for γ is

Pr(γ|nT
1 , η, κ) ∝

T
∏

t=1

N
(

log(γt); F′ηt, κ
)

Po(nt; γt), (4.32)

and the entire vector will be sampled in a single Metropolis-Hastings step. The Laplace

approximation to the Poisson likelihood for log(γt) is Po(nt; γt) ≈ N(log(γt); log(nt),

1/nt), and we make use of this to build an independent proposal distribution. Given a

present state of the MCMC at γ, propose each γ̃t from N (log(γ̃t); DE, D), where D =

(n + 1/κ)−1 and E = n log(n) + F′ηt/κ. Each move γt → γ̃t is then accepted with

probability

min

{

1,
Po(nt; γ̃t)N (γt; DE, D)

Po(nt; γt)N (γ̃t; DE, D)

}

. (4.33)

Finally, the posterior full conditional for κ is sampled directly from Ga
(

κ−1 ; aκ + T/2,

bκ +
∑T

t=1(log(γt) − F′ηt)
2
)

.
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4.3 Data Examples

We turn to two examples of spatial point pattern data to illustrate the DP

mixture modeling framework. The first data set, consisting of information about a

longleaf pine forest in southern Georgia, USA, is used to illustrate the modeling for

a Poisson process with positive continuous marks. The second data set consists of

crime event information for the city of Cincinnati, OH, during 2006. The crime events

have been classified by type, and as such offer an example of a Poisson process with

categorical marks. As well, we are able to view the monthly crime event patterns as an

example of a discrete-time dynamic spatial point process. The data illustrations make

reference to the model specification and posterior simulation methodology of Section

4.2, in each case assuming a transformation of observed locations to coordinates within

the unit square through normalization of the observation window.

4.3.1 Longleaf Pine Forest with Tree Diameter Marks

The data record the locations and diameters of 584 Longleaf pine (Pinus Palus-

tris) trees in a 200×200 meter patch of forest in Thomas County in the state of Georgia.

The trees were surveyed in 1979 and the measured mark is diameter at breast height

(1.5 m), or dbh. The data is available as part of the spatstat package for R, and was

introduced in a study by Platt et al. (1988). A detailed description of the data may

be found in this article. In addition, the data were analyzed by Rathburn and Cressie

(1994) as part of a space-time survival point process. Poisson processes are generally
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viewed as an inadequate model for forest patterns, due to the dependent birth process

by which trees occur. However, at a single time point, the nonhomogeneous Poisson

process should be flexible enough to account for the variability in tree counts throughout

the observation window. The combination of a high density for juveniles (trees < 10 cm

dbh) with a more even dispersal of larger trees leads to multimodal conditional mark

densities and nonhomogeneous variability about this density.

The model of Section 4.2.3 was applied to the data and posterior simulation

results were obtained following the MCMC algorithm of Section 4.2.3.1. Prior speci-

fication with respect to parameters of the location base distribution Gy
0 was aβ = 2,

bβ = 1, and cβ = 2 after scaling the observation window to a unit square, and π(α) =

Ga(2, 0.2). Following again in the spirit of Section 2.2, the prior for the base distribution

of kernel parameters related to the dbh marks (measured in centimeters) was such that

π(s1) = N(2.9, 0.37), π(s−1
2 ) = Ga(2, 0.37), π(s3) = Ga(2, 2/0.37), and s4 is fixed at 2,

where 2.9 is the mean of the log dbh and
√

.37 is one sixth of the log dbh data range.

Results are based on an MCMC sample of 10,000 parameter draws recorded on every

second iteration following a burn-in period of 5000 iterations. L = 100 for the finite

stick-breaking approximation.

Posterior samples of the DP precision α and of the number of unique allo-

cated ϑ components, n?, are shown in figure 4.1. Posterior realizations of the marginal

location process density at any point y0 is available, conditional on a realization the

finite stick-breaking GL, as f(y0; G
L) =

∑L
l=1 pl B2( y0; µl, τ l, ϕl). As seen in figure

4.2, this marginal process density is dominated by a few peaks which arise due to high
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Figure 4.1: Longleaf Pine Data. Posterior samples for the number of distinct clusters
and the DP prior precision.

concentrations of small juvenile trees. Despite this highly variable process intensity,

the analysis is able to capture the conditional mean dbh surface shown on the right

side of Figure 4.2, where we see that the peaks in process density correspond to valleys

for expected dbh. This is to be expected, as smaller trees are able to survive in much

higher density. Note that realisations of this mean are available analytically (up to the

truncation approximation), since

E[m|y; GL] =

∫ ∞

0
mPr(m|y; GL)dm

=

∑L
l=1 plB2(y; ϑl) exp

[

ql1 + 1
2ql2

]

∑L
l=1 plB2(y; ϑl)

. (4.34)

Finally, posterior sampling of the conditional mark density at any point m0 given y0 is

available, for a realization of GL, as

f(m0 | y0; G
L) =

∑L
l=1 plB2(y0; µl, τ l, ϕl)N(log(m0); ql1, ql2)

f(y0; GL)
. (4.35)
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Figure 4.2: Longleaf Pine Data. Mean posterior Poisson process marginal location
density E[ f(y; G) | D] (left) and the mean posterior conditional mean for tree dbh,
E [E[m|y; G]D] (right).
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Figure 4.3: Longleaf Pine Data. Posterior mean estimates (solid lines) and 90% interval
estimates (dashed lines) for four conditional mark densities f(m | y0; G) at (clockwise
from top-left) y0 = [100, 100], [150, 150], [150, 50], and [25, 150].
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In Figure 4.3, the expected multimodal behavior is clearly exhibited in posterior samples

of the conditional density for dbh at four different locations. Although the conditional

densities vary in shape over the different locations, each appears to show the mixture of

a relatively smooth density component for mature trees combined with a sharp peak at

low dbh values corresponding to collections of juvenile trees. It is notable that we are

able to infer this structure nonparametrically, in contrast to existing approaches where

the effect of a tree-age threshold is assumed a priori (as in Rathburn and Cressie, 1994).

4.3.2 Crime Event Data with Categorical Classification

The city of Cincinnati maintains an online database of detailed crime statistics.

For illustration of the DP mixture model methodology for a Poisson point process with

categorical marks, we consider 34,651 crime events within the city during 2006. The

database of arrests in Hamilton County (which contains Cincinnati) reports date, time,

and location of crimes, as well as other data that might be useful to characterize the

magnitude of the reported event. Note that crimes south of the Ohio River (i.e., in

Kentucky) are not contained in the database. Crimes are reported by addresses, and the

geocoding to convert these locations to longitude and latitude coordinates was conducted

using the website www.gpsvisualizer.com.

Crimes have been assigned one of more than 170 different Uniform Crime

Reporting codes describing a variety of events such as telephone harassment, vehicle

theft, murder, and the like. This variable was used to reclassify and group the data into

3 main categories (excluding other types of crime):
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Figure 4.4: Crime Event Data with Categorical Marks. Observation window and data
locations, color coded by type of crime.

1. Crimes against people with extreme violence (e.g. murder, rape)

2. Crimes against people with minor violence (e.g. assault, mugging)

3. Crimes against property (e.g. burglary, arson)

Thus the mark m associated with each crime is membership in one of these three

categories.

The 34,651 data locations and the observation window are shown in Figure

4.4. For purposes of our analysis, the observation window has been defined to be

the area contained within [−84.65,−84.37] degrees longitude and [39.09, 39.23] degrees

latitude. While this includes a region south of the Ohio river, and thus not technically

part of the observation window, we have assumed for illustrative purposes that the
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rectangular window holds. In practice, due to the large sample size, the DP mixture

model assigns posterior intensity of very nearly zero to areas south of the river, and

with the conditional mark density defined as simply zero wherever the joint location-

mark density is zero, the results are unaffected by this simplification. A more complete

analysis of this data, however, may benefit from use of a bounded kernel. In particular,

due to other discontinuities inherent in an urban landscape, crime event pattern analysis

could be an ideal application for the bivariate uniform kernel of (4.6).

The model of Section 4.2.2 was applied to the data and posterior simulation

results were obtained following the procedure of Section 4.2.2.1. Prior specification for

parameters of the location base distribution Gy
0 was aβ = 2, bβ = 0.2, and cβ = 2 after

scaling the observation window to a unit square, and π(α) = Ga(2, 0.2). The Dirichlet

base distribution for kernel mark probabilities Q was parameterized by aq = [1, 2, 4],

representing expected relative frequency for the three crime classes. Results are based on

an MCMC sample of 8000 parameter draws recorded on every second iteration following

a burn-in period of 2000 iterations. L = 300 for the finite stick-breaking approximation,

and inference occurred over a 30 × 30 grid of locations.

Posterior samples of the DP precision α and of the number of unique allocated

ϑ components, n?, are shown in Figure 4.5. It is notable that only 60 to 70 of the mixture

components were ever allocated to observations, despite the huge number of data points,

indicating a considerable efficiency in modeling. Posterior realizations of the marginal

location process density at any point y0 is again available, calculated as in Section 4.3.1,

and the posterior mean is shown in Figure 4.6. This marginal intensity estimate is able
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Figure 4.5: Crime Event Data with Categorical Marks. Posterior samples for the number
of distinct clusters and the DP prior precision.
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Figure 4.6: Crime Event Data with Categorical Marks. Mean posterior Poisson process
marginal location density E[ f(y; G) | D]. The data locations are plotted in grey.
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Figure 4.7: Crime Event Data with Categorical Marks. Mean posterior conditional
probability for each crime category (for m = 1 to 3, from top to bottom), E [Pr[m|y;
G]D]. Observations corresponding to each category are plotted in grey.
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to capture the broad neighborhood structure and account for geographical boundaries

within the observation window, despite a lack of any prior information related to these

features. Posterior sampling for the location-dependent probability for each crime class

m0 is calculated, given GL, as

f(m0 | y0; G
L) =

∑L
l=1 plB2(y0; µl, τ l, ϕl)qm0

f(y0; GL)
. (4.36)

Posterior mean category probabilities corresponding to m0 = 1, 2, and 3 are mapped

in Figure 4.7, and posterior samples for Pr(m = 1|y0) and Pr(m = 2|y0) at specific

y0 locations are in Figure 4.8. The mean conditional probability surface for m = 1 is

considerably more uniform than those for m = 2 and m = 3, as would be expected due

to the general rarity of extremely violent crime. It also appears that the probability

of a crime event involving violence at all (i.e., m = 1 or m = 2) is higher in the more

central neighborhoods. In detail, we see in the boxplots of Figure 4.8 that crimes in both

the near West side and downtown are more likely to involve any level of violence than

those committed elsewhere in the city, while crimes committed in Madeira are most

likely property crimes. Finally, the probability of a crime involving extreme violence is

significantly higher in the downtown area than anywhere else monitored. In fact, the

location corresponding to downtown in this figure is located just north of the central

business district, in the Over-the-Rhine neighborhood, which was the site of violent

rioting in 2001. The riots began in reaction to specific incidents of police brutality,

and the aftermath of this event led to the public dissemination of the crime statistics

analyzed here.
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4.3.3 Monthly Violent Crime Event Data

To illustrate the single-p DDP model for discrete time Poisson processes, we

again consider the Cincinnati crime event data, but now restrict ourselves to 3857

events of extremely violent crime against persons (crime category 1). The monthly data

is plotted in Figure 4.9.
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Figure 4.9: Monthly Crime Event Data. Observation window and data locations, color
coded by month.

The model of Section 4.2.4 was applied to the data for T = {1, . . . , 12}, and

posterior simulation results were obtained following the procedure of Section 4.2.4.1.

Prior specification for parameters of the location base distribution Gy
0 was the same as

for Section 4.3.2, and the hyperprior for parameters underlying the PBAR prior was

π(α) = Ga(2, 0.2) and π(ρ) = U(0, 1). The DLM model for log monthly intensity is
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specified with

F =
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. (4.37)

In the block diagonal G = Diag[J2(1), J2(1, 2π/4), J2(1, 2π/12)], the first block cor-

responds to a linear trend and the other blocks to seasonal components consisting of

persistent harmonic oscillations of period 4 and 12 respectively (triannual and annual

trends). The variance components are specified through a Ga(1, 1) prior for κ and use

of a discount factor δ = 0.99. The prior state parameters are m0 = [5.8,0,0,0,0,0]′ and

C0 = Diag[1,2,0.5,0.5,0.5,0.5].

Results are again based on an MCMC sample of 8000 parameter draws recorded

on every second iteration following a burn-in period of 2000 iterations. L = 300 for

the finite stick-breaking approximation, and inference occurred over a 30 × 30 grid of

locations for each of the 12 months in 2006. The monthly posterior mean process

densities are shown in Figure 4.11, and we see that the crime density has become more

diffuse throughout the year. Anecdotally, this may be a result of warming throughout

the spring combined with a campaign of extra police officers dispatched to the worst

neighborhoods which began in May. As the neighborhood structure remains static over

the entire year, but the relative magnitude of crime intensity is clearly dynamic, this
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presents an efficient application of the single-θ DDP model. We note that these mean

process density surfaces all appear to be more difffuse that the marginal process density

(for all crime classes) of Figure 4.6; this is consistent with the general rarity of extremely

violent crime. The DLM fit for log integrated intensity is shown in Figure 4.10, showing

a negative linear trend along with triannual and annual seasonal effects (however, since

there are only 12 observations, the posterior is quite diffuse). This figure also contains

an intensity forecast for 2007.

The PBAR process underlying the single-p DDP monthly correlation is ex-

hibited in the posterior sample of the first three weights of the related stick-breaking

measures, p1, p2, and p3. Figure 4.13 shows posterior quartiles for these three vectors

as well as a thinned sample of realized monthly paths for each weight. Figure 4.12

contains histograms for the relevant parameters. Note that the posterior mean for α is

2.7 and the posterior mean ρ is 0.76, for an expected temporal autocorrelation between

stick-breaking proportions of about 0.7. This indicates a temporal dependence between

monthly crime event densities, as would be expected. However, it is also clear that the

densities evolve qualitatively over time, and as such it would be insufficient to model

this data with a dynamic integrated intensity but a static process density.

Within four subregions of the observation window, shown in the top panel of

Figure 4.14, the intensity surface was numerically integrated at each MCMC iteration

to obtain an integrated monthly intensity (i.e., for each t the product of γt and
∫

B f(y;

GL
t ), with B the region of interest). The posterior sample of these intensities is shown

in the bottom panel of Figure 4.14. In addition, the posterior mean intensity path for
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each subregion was compared to the monthly crime counts for the respective area, and

the Anscombe residuals (see McCullagh and Nelder, 1989, for a discussion with respect

to Poisson GLM) were calculated as 3
(

n
2/3
t − Λt(B)2/3

)

/
(

2Λt(B)1/6
)

. We see in the

table of Figure 4.14 that most of the residuals fall within [−2, 2], indicating a reason-

able model fit for these subregions of the observation window. This is a considerable

accomplishment, as these estimates are derived from a complex nonparametric estima-

tion procedure over the larger space without any explicit modeling for the individual

subregions.
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Figure 4.10: Monthly Crime Event Data. The top left plot shows posterior quartiles
for monthly total intensity γ1, . . . , γ12 and forecast mean intensity for 2007. Actual
crime event counts for 2006 are plotted in the background. The remaining plots show
posterior quartiles for the DLM state components. Clockwise from top right, we show
the linear trend, the annual trend, and the triannual trend.
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Chapter 5

Conclusion

We conclude with a discussion of some implications and possible extensions of

the presented work. First, each of the general regression frameworks of Chapters 2 and

3 may be extended through the use of dependent DP priors in modeling for correlated

random measures. As in the discussion of Section 4.1.3, use of DDP priors for the

random mixing measure will not require fundamental changes to either kernel specifi-

cation or the inference framework. Indeed, the Appendix contains a general outline of

posterior sampling methodology for single-θ DDP mixtures, and this prior model may

be appropriate for new settings other than modeling for Poisson point processes. For

example, we have considered an extension of the regression scheme of Chapter 2 to the

setting of geographically related, but distinct, populations of covariates and response.

In this case, a conditional autoregressive dependent DP prior may be used to induce

correlation between nonparametric regression estimators for adjacent populations.

In the particular setting of regression, it may be useful to have only a subset of
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the covariates modeled as part of a joint density kernel, while making the random mixing

measure dependent upon the remaining covariates. A regression model for a combination

of both continuous and discrete covariates arises by maintaining the multivariate normal

kernel structure of Chapter 2, but assigning a dependent DP prior on the collection of

mixing distributions corresponding to the different levels of the categorical covariates.

For instance, with a single binary covariate, the data vector can be decomposed into

two groups, {zij = (yij ,xij) : i = 1, ..., nj}, j = 1, 2, associated with the two levels

of the categorical covariate. Then, for j = 1, 2, the zij are assumed to arise from

the DP mixture in (2.2) given group-specific mixing distributions Gj . The model is

completed with a dependent DP prior for (G1, G2), say, in the spirit of Tomlinson and

Escobar (1999) and de Iorio et al. (2004), or Gelfand and Kottas (2001) if stochastic

order restrictions for the categorical covariate levels are plausible (as may be the case

in treatment-control settings for the survival regression models of Section 3.2). This

approach is also an option when the marginal distribution for a subset of the covariate

vector is known a priori (e.g., in a designed experiment).

Also within the context of regression, it will be possible to develop inference

frameworks for conditional functionals other than quantiles or means. In particular,

sensitivity analysis is performed to resolve the sources of response variability by appor-

tioning elements of this variation to different sets of covariates (refer to Saltelli et al.,

2000, for an introduction and references). Such global sensitivity analysis is based on

inference for sensitivity indices which measure variability of the response with respect to

uncertainty in different subsets of the covariates (see Taddy et al., 2007, for a Bayesian
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example based on Gaussian process regression). This presents a natural application for

our approach to implied conditional regression, as we are already modeling for covariate

uncertainty in sampling of the joint covariate-response density function.

The general approach in Section 3.2 of having informative parametric model-

ing linked with nonparametric models through an underlying hidden stochastic process

is both theoretically appealing and practically powerful. We believe that there is great

potential for such models, since they provide an efficient way to bridge the difference in

scale between two observed processes, and the MCMC algorithms presented here can

be the basis for extended techniques in other settings. Also with reference to Section

3.2, the methodology presented therein is applicable in more general settings involving

hidden Markov model structure. In particular, since the switching occurs at the level of

the joint distribution for response and covariates, the algorithms are directly applicable

to nonparametric density estimation through DP mixtures of multivariate normal distri-

butions for heterogeneous populations where switching between subpopulations occurs

as a Markov chain.

Unlike the Pólya urn marginalization, posterior simulation algorithms built

around a finite truncation of the DP do not rely upon a Be(1, α) prior for stick-breaking

proportions. Thus, much of the model development and posterior simulation methodol-

ogy may be extended to alternative stick breaking priors. In particular, corresponding

frameworks based on the general beta two-parameter process of Ishwaran and Zarepour

(2000) present an obvious continuation of our work. In a similar spirit, the sequential

Monte Carlo methodology for single-θ DDP priors presented in Section 4.2.4 will apply
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to multivariate stick-breaking proportion priors other than the PBAR induced density,

and many more elaborate constructions for time series of random measures are possible.

This thesis provides a suite of flexible and practical nonparametric Bayesian

analysis frameworks, together related under a particular approach to DP mixture model-

ing based on joint density estimation with carefully chosen kernels and inference through

finite stick-breaking approximation. As it is applicable for DDP mixtures of generic ker-

nels and requires specification of only a single univariate stochastic process, the single-θ

DDP prior and posterior simulation development is very much in keeping with this ap-

proach. It was a stated goal in the introduction that the methodology contained herein

would find usage in a wide variety of data analysis applications, and I believe that the

preference towards relative simplicity in model specification and generality in poste-

rior simulation methodology (combined with forthcoming software in publicly available

packages for R) will do much to achieve this goal.
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Appendix

Posterior Simulation for Generic

Finite Stick-Breaking Models

While Pólya urn based posterior simulation techniques for DP mixture models

have been detailed extensively elsewhere (e.g., Neal, 2000), sampling algorithms for

the finite stick-breaking models presented throughout this thesis may be less familiar.

Thus, we now present a quick outline of a general approach to simulation for this class

of models.

Consider data D = {z1, . . . , zn}, where zi = [zi,1, . . . , zi,d], accompanied by

an index vector t = {t1, . . . , tn}, where ti ∈ {1, . . . , T} indicates the state (e.g., time)

corresponding to observation zi. A generic dynamic finite stick-breaking mixture model
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holds that, for i = 1, . . . , n, zi ∼ k(zi; Θki
) and

ki|P ∼
L

∑

l=1

pl,tiδ[l](ki)

P,Θ|α, ψ ∼ PL (P; S(v; α))
L

∏

l=1

dG0(Θl; ψ),

where Θ = {Θ1, . . . ,ΘL}, S is a T -dimensional distribution induced by a stochastic pro-

cess with realizations in (0, 1), and the multivariate stick-breaking prior PL (P; S(v; α))

for P = {p1, . . . , pL}, is defined constructively such that v1, . . . ,vL−1
iid∼ S(v; α),

vL = 1, p1 = v1, and for l = 2, . . . , L; t = 1, . . . , T : pl,t =
∏l−1

j=1(1 − vj,t)vl,t.

This model represents a finite stick-breaking truncation of the single-θ DDP as

defined in Section 4.1.3. A generic static stick-breaking model is defined in the special

case of T = 1. In full generality, assume that Θl = {θl,1, . . . , θl,B} for B ≤ d such that

k(z; Θ) =
∏B

b=1 kb(z
b; θb) and G0(Θ;ψ) =

∏B
b=1 Gb

0(θb; ψb), where z = [z1, . . . , zB]. Thus

the B kernel components (corresponding to subsets of z; e.g., continuous and discrete

variables) are conditionally independent given k, and posterior sampling methodology

will exploit this fact whenever possible. The hyperprior is π(α, ψ) = π(α)
∏B

b=1 π(ψb).

Introduce the L× T indicator matrix h, where hl,t =
∑n

i=1 δ[ki=l,ti=t], and the

related vector H = {H1, . . . , HL}, where Hl =
∑n

i=1 δ[ki=l] =
∑T

t=1 hl,t. Hence, the

location parameters may be partitioned into allocated Θ? = {Θ?
1, . . . , Θ?

n?} = {Θl :

Hl > 0} and unallocated Θu = {Θu
1 , . . . , Θu

nu} = {Θl : Hl = 0}. Additionally, this allows

us to define L? ∈ {1, . . . , L − 1} as the lowest index value such that
∑L

l=L?+1 Hl = 0,

with L? = L−1 if this is impossible. Finally, it is convenient to specify k? = {k?
1, . . . , k

?
n}

such that zi ∼ k(zi; Θ
?
k?

i
).
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Gibbs sampling from posterior full conditional distributions then proceeds as

follows:

• For j = 1, . . . , nu, simulate independently each Θu
j ∼ G0(ψ).

• For j = 1, . . . , n? and for b = 1, . . . , B, simulate independently each θ?
j,b from the

distribution with density proportional to dGb
0(θ

?
j,b; ψb)

∏

{i:k?
i =j} kB(zb

i ; θ
?
j,b).

• For b = 1, . . . , B, sample ψb with density proportional to π(ψb)
∏n?

j=1 dG0(θ
?
j,b; ψb).

• For i = 1, . . . , n, each ki is independently sampled with probability function pro-

portional to
∑L

1=1 pl,tik(zi; Θl)δ[l](ki).

• For l = 1, . . . , L?, each vl is sampled independently from the density proportional

to S (vl; α)
∏T

t=1 Bin
(

hl,t;
∑L?

j=l hj,t, vl,t

)

. If T = 1 and S(α) = Be(1, α) (as for a

truncated DP prior), this simplifies to a Be(1 + Hl, α +
∑L

j=l+1 Hj) distribution.

• For l such that L? < l < L, draw independently each vl from the prior S(vl; α).

vL is a vector of ones.

• Sample α with density proportional to π(α)
∏L?

l=1 S(vl; α). In the static case

with S(α) = Be(1, α) and π(α) = Ga(a, b), the posterior full conditional for α is

Ga
(

a + L?, b +
∏L?

l=1(1 − vl)
)

.

Detailed descriptions of sampling algorithms based upon this general structure are con-

tained throughout this thesis, immediately following the relevant model specification.
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