
Bayesian Guided Pattern Search for Robust Local Optimization

Matthew Taddy, Herbert K. H. Lee, Genetha A. Gray, and Joshua D. Griffin∗

February 12, 2009

Abstract

Optimization for complex systems in engineering often involves the use of expensive computer

simulation. By combining statistical emulation using treed Gaussian processes with pattern search

optimization, we are able to perform robust local optimization more efficiently and effectively than

using either method alone. Our approach is based on the augmentation of local search patterns

with location sets generated through improvement prediction over the input space. We further

develop a computational framework for asynchronous parallel implementation of the optimization

algorithm. We demonstrate our methods on two standard test problems and our motivating example

of calibrating a circuit device simulator.

KEY WORDS: robust local optimization; improvement statistics; response surface methodology;

treed Gaussian processes.

∗M. Taddy is an Assistant Professor at the University of Chicago Booth School of Business, 5807 S. Woodlawn Ave,

Chicago, IL 60637. H. K. H. Lee is a Professor, Department of Applied Mathematics and Statistics, University of

California, Santa Cruz. G. A. Gray is a technical staff member at Sandia National Laboratories, Livermore, California.

J. D. Griffin is a researcher staff member at the SAS Institute. This work was partially supported by Sandia grants

496420 and 673400, and NSF grants DMS-0112069 and DMS-0504851. Sandia National Laboratories is a multi-program

laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy

under contract DE-AC04-94AL85000. Any opinions, findings, and conclusions expressed in this material are those of the

authors and do not necessarily reflect the views of the funding organizations.

1

1 INTRODUCTION

Significant advances in computing capabilities and the rising costs associated with physical exper-

iments have contributed to an increase in both the use and complexity of numerical simulation.

Often, these models are treated as an objective function to be optimized, such as in the design

and control of complex engineering systems. The optimization is characterized by an inability to

calculate derivatives and by the expense of obtaining a realization from the objective function. Due

to the cost of simulation, it is essential that the optimization converges relatively quickly. A search

of the magnitude required to guarantee global convergence is not feasible. But at the same time,

these large engineering problems are often multi-modal and it is possible to get stuck in low quality

solutions. We thus wish to take advantage of existing local optimization methods (i.e., algorithms

which locate a function optimum nearby to a specified start location) for quick convergence, but

use a statistical analysis of the entire function space to facilitate a global search and provide more

robust solutions.

We argue for the utility of using predicted objective function output over unobserved input

locations, through statistical emulation in the spirit of the analysis of computer experiments (e.g.,

Kennedy and O’Hagan, 2001; Santner, Williams, and Notz, 2004; Higdon, Kennedy, Cavendish,

Cafeo, and Ryne, 2004), to act as a guide for underlying local optimization. Our framework could

thus be classified as an oracle optimization approach (see Kolda, Lewis, and Torczon, 2003 and

references therein), where information from alternative search schemes is used to periodically guide

a relatively inexpensive local optimization. In particular, we propose a hybrid algorithm, referred

to as TGP-APPS, which uses prediction based on nonstationary treed Gaussian process (TGP)

modeling to influence asynchronous parallel pattern search (APPS) through changes to the search

pattern. Based upon the predicted improvement statistics (see e.g. Schonlau, Welch, and Jones,

1998) at a dense random set of input locations, candidate points are ranked using a novel recursive

algorithm and a predetermined number of top-ranked points are added to the search pattern. Both

APPS and the TGP-based generation of candidate locations result in discrete sets of inputs that are

queued for evaluation, and the merging of these two search patterns provides a natural avenue for

communication between components. This same property makes the methodology easily paralleliz-

2

able and efficient to implement. We argue that, in many situations, the approach will offer a robust

and effective alternative to algorithms based only on either a global statistical search or a local

pattern search. In addition, although we will refer specifically to APPS and TGP throughout and

have experienced success with these methods, our parallel scheme encompasses a general approach

to augmenting local search patterns with statistically generated location sets, and we emphasize

that other researchers may find success using alternative methods for statistical emulation or for

parallel search.

The methodological components underlying our approach, local optimization through asyn-

chronous parallel pattern search and statistical emulation of the objective function with treed

Gaussian processes, are described in Sections 2.1 and 2.2 respectively. The novel hybrid algorithm,

combining APPS with TGP, is presented in Section 3. Details for the generation of ranked global

search patterns based on statistical emulation are contained in Section 3.1. Section 3.2 discusses an

initial design framework, including an informed sampling of the input space and sensitivity analysis.

Section 3.3 outlines a framework for the asynchronous parallel implementation of our hybrid opti-

mization algorithm, and the results are shown on two standard test problems (which are introduced

below in the next section). In Section 4, we illustrate our methods on our motivating example

involving calibration of a circuit device simulator. Finally, in Section 5, we investigate convergence

and begin to consider how statistical information can be used to assess the quality of converged

solutions.

1.1 Examples

For illustration of the methodology throughout this paper, we consider two common global opti-

mization test functions, the Rosenbrock and Shubert problems. Both involve minimization of a

continuous response f(x) over a bounded region for inputs x = [x1, x2] ∈ R2. Specifically, the two

dimensional Rosenbrock function is defined as

f(x) = 100(x2
1 − x2)

2 + (x1 − 1)2, (1)

3

where herein −1 ≤ xi ≤ 5 for i = 1, 2, and the Shubert function is defined as

f(x) =

5∑

j=1

j cos((j + 1)x1 + j)

5∑

j=1

j cos((j + 1)x2 + j)

 , (2)

where −10 ≤ xi ≤ 10 for i = 1, 2. The global solution of the Rosenbrock problem is x⋆ = (1, 1) for

f(x⋆) = 0, and the Shubert problem has 18 global minima x⋆ with f(x⋆) = −186.7309 (problem

descriptions from Hedar and Fukushima, 2006).

The response surfaces are shown in the background of Figure 1. Some particular difficulties for

optimization algorithms are emphasized in these problems. The plotted log-response surface for the

Rosenbrock function shows a steep valley with a gradually sloping floor. The solution lies at the end

of this long valley, and the combination of steep gradients up the valley walls and gradual gradients

along the valley floor will typically cause problems for local search methods such as gradient descent

and pattern search. As seen on the right hand side of Figure 1, the Shubert problem is characterized

by rapid oscillations of the response surface. There are multiple minima and each is located adjacent

to dual local maxima, thus presenting a challenging problem for global optimization methods that

will tend to over explore the input space or miss a minimum hidden amongst the maxima.

Each of these problems illustrate different aspects of our algorithm. The Rosenbrock problem

is specifically designed to cause local pattern search methods to break down. The motivation

for considering this problem is to show the potential for TGP-APPS to overcome difficulties in

the underlying pattern search, and to significantly decrease computation time in certain situations.

Conversely, the Shubert problem is relatively easily solved through standard pattern search methods,

while the presence of multiple global minima would cause many algorithms based solely on statistical

prediction to over-explore the input space and lead to higher than necessary computation costs.

Indeed, the APPS optimization does converge, on average, in about half the iterations used by TGP-

APPS. However, this is a small increase in computation compared to that which would be required

by many fully global optimization routines (such as genetic algorithms or simulated annealing).

And the results for APPS-TGP may be considered more robust; the global scope of the TGP

search protects against premature convergence to a local optimum. The benefit of this additional

robustness is clearly illustrated in the real-world application of Section 4.

4

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

−10 −5 0 5 10

−
10

−
5

0
5

10

 X1

X2

Figure 1: Rosenbrock (left) and Shubert (right) test problems. The response surface images (log
response for Rosenbrock) are rising from white to black, and trace paths for the best point during
optimization are shown as a dotted line for APPS, a dashed line for APPS-TGP, and a solid line for
APPS-TGP following an initialization through Latin hypercube sampling.

2 ELEMENTS OF THE METHODOLOGY

The optimization algorithm is based on point locations suggested either by asynchronous parallel

pattern search, or through a statistical analysis of the objective function based on treed Gaussian

processes. These two methodological elements will be outlined in Sections 2.1 and 2.2, respectively.

As is the case throughout, all algorithms and examples have minimization as the unstated goal.

2.1 Asynchronous parallel pattern search

Pattern search is included in a class of derivative-free optimization methods primarily developed to

address problems in which the derivative of the objective function is unavailable and approximations

are unreliable (Wright, 1996). The optimization uses a predetermined pattern of points to sample

a given function domain, and is considered a direct search algorithm (Kolda et al., 2003) with

no attempt made to explicitly evaluate or estimate local derivatives. This type of optimizer is

considered to be more robust than derivative-based approaches for difficult optimization problems

with nonsmooth, discontinuous, or undefined points.

5

The APPS algorithm is much more complicated than simple pattern search, requiring careful

bookkeeping, and we thus only provide a brief outline of the basic steps in this paper, referring the

more interested reader to Kolda (2005) and Gray and Kolda (2006). At each iteration k of APPS,

three basic steps are executed:

1. generate a set of trial points Qk around the current best point xbest
k (defined below),

2. send trial points Qk to the compute cluster, and obtain a set of function evaluations Rk,

3. update the best point, xbest
k+1.

Convergence to locally optimal points is ensured using a sufficient decrease criterion for accepting

new best points. An incoming trial point x′ is considered to be a new best point if f(x′)−f(xbest
k) < δ,

for user defined δ > 0. In the unconstrained case, using standard assumptions, it can be shown that

lim inf
k→∞

‖∇f(xbest
k)‖ → 0.

Similar optimality results can be shown for linearly constrained optimization in terms of projections

onto local tangent cones (Kolda, Lewis, and Torczon, 2006).

Trial points are generated using a positive spanning set of search directions {d1, . . . , dL} and

have the form Qk = {xbest
k + ∆kldl | 1 ≤ l ≤ L}, for positive step sizes ∆kl. The step sizes and

search directions are chosen as described in Gray and Kolda (2006). After a successful iteration

(one in which a new best point has been found), the step size is either left unchanged or increased.

However, if the iteration was unsuccessful, the step size is reduced. A defining difference between

simple pattern search and APPS is that, for APPS, directions are processed independently and

each direction may have its own step size. Because of the asynchronous environment, the members

of Qk will generally not all be returned in Rk+1 but instead will be spread throughout the next

several R’s. Thus APPS needs to be able to deal with the fact that the function evaluations may be

returned in a different order than requested, and that the generation of the next iteration of trial

points Qk+1 may need to be created before all of the results of the previous iteration are available.

This algorithm has been implemented in an open source software package called APPSPACK and

has been successfully applied to problems in microfluidics, biology, groundwater, thermal design,

6

and forging; see Gray and Kolda (2006) and references therein. The latest software is publicly

available at http://software.sandia.gov/appspack/. There are many plausible competitors for

APPS as a derivative-free optimization method; see, for example, Fowler et al. (2008), for a thorough

comparison of a dozen such algorithms. However, it should be noted that it is the parallelization

of the APPS search which makes it particularly amenable to a hybrid search scheme and that

there are relatively few available parallel methods. Our software development is exploring the use

of alternative parallel search components, but none of these are as easily available or as widely

distributed as APPS.

2.2 Treed Gaussian process emulation

A Bayesian approach was brought to the emulation of computer code in the paper by Currin,

Mitchell, Morris, and Ylvisaker (1991) which focuses on the commonly used Gaussian process (GP)

model. As well, the book by Santner et al. (2003) follows a mainly Bayesian methodology and offers

a detailed outline of its implementation through examples. The standard practice in the computer

experiments literature is to model the output of the simulations as a realization of a stationary

GP (Sacks, Welch, Mitchell, and Wynn, 1989; O’Hagan, Kennedy, and Oakley 1998; Fang, Li, and

Sudjianto, 2006). In this setting, the unknown function is modeled as a stochastic process: the

response is a random variable f(x) dependent upon input vector x. In model specification, the set

of stochastic process priors indexed by the process parameters and their prior distributions represent

our prior uncertainty regarding possible output surfaces. It is possible to model both deterministic

and non-deterministic functions with these methods. The basic GP model is f(x) = µ(x) + w(x)

where µ(x) is a simple mean function, such as a constant or a low-order polynomial, and w(x) is a

zero mean random process with covariance function c(xi, xj). A typical approach would be to use

a linear mean trend µ(x) = xβ and an anisotropic Gaussian correlation function,

c(xi, xj) = exp

[

−

(
d∑

k=1

(xik − xjk)2

θk

)]

(3)

where d is the dimension of the input space and θk is the range parameter for each dimension.

Treed Gaussian process (TGP) models form a natural extension of this methodology and pro-

7

vide a more flexible nonstationary regression scheme (Gramacy and Lee, 2008). There is soft-

ware available in the form of a tgp library for the statistical package R (see http://www.cran.

r-project.org/src/contrib/Descriptions/tgp.html), which includes all of the statistical meth-

ods described in this paper. TGP models work by partitioning the input space into disjoint regions,

wherein an independent GP prior is assumed. Partitioning allows for the modeling of nonstationary

behavior, and can ameliorate some of the computational demand of nonstationary modeling by

fitting separate GPs to smaller data sets (the individual partitions). The partitioning is achieved in

a fashion derived from the Bayesian Classification and Regression Tree work of Chipman, George,

and McCulloch (1998 & 2002). Our implementation uses reversible jump Markov chain Monte

Carlo (Green, 1995) with tree proposal operations (prune, grow, swap, change, and rotate) to si-

multaneously fit the tree and the parameters of the individual GP models. In this way, all parts

of the model can be learned automatically from the data, and Bayesian model averaging through

reversible jump allows for explicit estimation of predictive uncertainty. The prior on the tree space

is a process prior specifying that each leaf node splits with probability a(1 + q)−b, where q is the

depth of the node and a and b are parameters chosen to give an appropriate size and spread to the

distribution of trees. We use hierarchical priors for the GP parameters within each of the final leaf

nodes ν. For each region ν, the hierarchical GP model is

Zν |βν , σ2
ν , Kν ∼ Nnν

(Fνβν , σ2
νKν), β0 ∼ Nd+1(µ, B)

βν |σ2
ν , τ2

ν , W, β0 ∼ Nd+1(β0, σ2
ντ2

ν W) τ2
ν ∼ IG(ατ /2, qτ /2),

σ2
ν ∼ IG(ασ/2, qσ/2), W−1 ∼ W ((ρV)−1, ρ),

with Fν = (1, Xν), and W is a (d + 1) × (d + 1) matrix. The N , IG, and W are the (Multivariate)

Normal, Inverse-Gamma, and Wishart distributions, respectively. Hyperparameters µ, B, V, ρ, ασ,

qσ, ατ , qτ are treated as known, and we use the default values from the tgp package. The coefficients

βν are modeled hierarchically with a common unknown mean β0 and region-specific variance σ2
ντ2

ν .

There is no explicit mechanism in this model to ensure that the process is continuous across the

partitions. However, the model can capture smoothness through model averaging, as predictions are

integrated over the tree space, so when the true function is smooth, the predictions will be as well.

8

When the data actually indicate a non-smooth process, the treed GP retains the flexibility necessary

to model discontinuities. One further advantage of TGP over a standard GP is in computational

efficiency – fitting a Bayesian GP requires repeated inversion of an n × n matrix (where n is the

sample size), requiring O(n3) computing time. By partitioning the space, each region contains

a smaller subsample, and so the computational effort is significantly reduced. Further details of

implementation and properties for TGP are available in Gramacy and Lee (2008). We note that

other emulators, such as neural networks, could be considered, however we prefer the GP/TGP

family because of the ability to ensure a degree of smoothness in the fitted function, the ability to

model nonstationarity, and the robustness in the fitting of the model.

The TGP model involves a complex prior specification in order to promote mixing over alterna-

tive tree structures. However, the prior parametrization provided as a default for the tgp software

is designed to work out-of-the-box in a wide variety of applications. In all of the examples of this

paper, including the circuit application of Section 4, after both input and response have been scaled

to have mean of zero and a variance of one, process and tree parameters were assigned the default

priors from the tgp software (Gramacy, 2007). Here each partition has a GP of the form (3) but

with an additional nugget parameter in the correlation structure. Each range parameter θk has

prior π(θk) = gamma(1, 20)/2 + gamma(10, 10)/2, where gamma(a, b) has expectation a/b. The

covariance for (xi, xj) within the same tree partition is then σ2(c(xi, xj)+ γ), with σ2 the GP vari-

ance and γ the nugget parameter. The nugget term requires the only non-default parametrization,

due to the fact that we are modeling deterministic objective functions that do not involve random

noise. Although we do not completely remove accommodation of random error from the model, γ is

forced to be small through the prior specification π(γ) = gamma(1, 100) (as opposed to the default

gamma(1, 1) for noisy response surfaces). The presence of a small nugget allows for smoothing of

the predicted response surface to avoid the potential instability that is inherent in point-by-point

interpolation. This smoothing is made possible through the hybridization; since the local optimiza-

tion relies upon pattern search rather than the TGP predicted response, it is more important for

the statistical modeling to be globally appropriate than for it to be a perfect interpolator. We note

that the nugget also allows for the possibility of numerical instability in complex simulators, and it

9

improves numerical stability of the covariance matrix inversions required during MCMC.

The evaluated iterates of the optimization, in addition to any initial sampling as outlined in

Section 3.2, provide the data for which the TGP model is to be fit. Thus the statistical model

will be able to learn throughout the algorithm, leading to improved prediction as the optimization

proceeds. Mean posterior response surface estimates for the Rosenbrock and Shubert problems are

shown in Figure 2 for TGP fit to an initial sample of 20 function evaluations, as well as to the

entire set of evaluated iterates at the time of convergence for each test problem. This illustrates

the considerable amount of information gained during optimization.

0.0 0.5 1.0 1.5

0

1

2

3

4

0.0 0.5 1.0 1.5

−8 −4 0 4 8

−10

−5

0

5

10

−8 −4 0 4 8
X1

X2

Figure 2: Posterior mean predictive response surfaces for Rosenbrock (top) and Shubert (bottom)
problems. The left hand column corresponds to fit conditional on the initial sample of 20 points, and
the right hand column corresponds to TGP fit to all of the iterations at the time of convergence (128
for Rosenbrock, 260 iterations for Shubert). In each case, the evaluated iterates are plotted in grey.

10

3 HYBRID STATISTICAL OPTIMIZATION

We now present a framework for having global prediction, through the TGP emulator, guide local

pattern search optimization. Statistical methods have previously been employed in the optimization

of expensive black-box functions, usually in the estimation of function response through interpola-

tion. This estimated surface is then used as a surrogate model to be referenced during the opti-

mization. Generally, in these surrogate or response surface based schemes, optimization methods

are applied to the less expensive surrogate with periodic corrections from the expensive simulation

to ensure convergence to a local optimum of the actual simulator (see e.g., Booker, Dennis, Frank,

Serafini, Torczon, and Trosset, 1999; Alexandrov, Dennis, Lewis, and Torczon, 1998). The Expected

Global Optimizer (EGO) algorithm developed by Jones, Schonlau, and Welch (1998) instead uses

the surrogate model to provide input locations to be evaluated by the expensive simulator. At each

iteration, a GP is fit to the set of function evaluations and a new location for simulation is chosen

based upon this GP estimate. The method is designed to search the input space and converge

towards the global optimum. This algorithm characterizes a general class of global algorithms that

use response surface estimates to determine the input search. Similar algorithms based around ra-

dial basis function approximations have appeared recently in the literature (Regis and Shoemaker,

2007). The approach of Jones et al. is distinguished by the use of not only the response surface,

but also the estimation error across this surface, in choosing new input locations. This is achieved

through improvement statistics, and these feature prominently in our methods below.

While the optimization approach presented here has similarities to these response surface global

algorithms, the underlying motivation and framework are completely distinct. Moreover, existing

response surface methodologies rely either on a single point estimate of the objective surface or,

in the case of the EGO and related algorithms, point estimates of the parameters governing the

probability distribution around the response surface. Conversely, our analysis is fully Bayesian and

will be fit using MCMC, providing a sample posterior predictive distribution for the response at

any desired location in the input space. Full posterior sampling is essential to our algorithm for

the ranking of a discrete input set, and since TGP modeling is not the sole source for new search

information, the computational expense of MCMC prediction is acceptable. We argue that the

11

cost associated with re-starts for a local optimization algorithm (a standard approach for checking

robustness) will quickly surpass that of our more coherent approach in all but the fastest and

smallest optimization problems. In combining APPS with TGP, our goal is to provide global scope

to an inherently local search algorithm. The solutions obtained through the hybrid algorithm will

be more robust than those obtained through any isolated pattern search. But, in addition, we have

observed that the hybrid algorithm can lead to more efficient optimization of difficult problems.

This section will outline the main pieces of our optimization framework. We describe in Section

3.1 an algorithm to suggest additional search locations based upon a statistical analysis of the

objective function, in Section 3.2 a framework for initial sampling of the input space and sensitivity

analysis, and in Section 3.3 an outline of a general framework for efficient parallel implementation

of such hybrid algorithms. Finally, Section 3.4 contains the optimization results for our example

problems.

3.1 Statistically generated search patterns

We focus on the posterior distribution of improvement statistics, obtained through MCMC sampling

conditional on a TGP model fit to evaluated iterates, in building a location set to augment the local

search pattern. Improvement is defined here, for a single location, as I(x) = max{fmin − f(x), 0},

where fmin is the minimum evaluated response in the search (fmin may be less than the response

at the present best point, as defined above in Section 2.1 for purposes of the local pattern search,

due to the sufficient decrease condition). In particular, we will use the posterior expectation of

improvement statistics as a criterion for selecting input locations to be sent for evaluation. Note that

the improvement is always non-negative, as points which do not turn out to be new minimum points

still provide valuable information about the output surface. Thus, in the expectation, candidate

locations will be rewarded for high response uncertainty (indicating a poorly explored region of

the input space, such that the response could easily be lower than fmin) as well as for low mean

predicted response.

Schonlau et al. (1998) provide an extensive discussion of improvement statistics, and also propose

some variations on the standard improvement which will be useful in generating location sets. The

12

exponentiated Ig(x) = (max{(fmin − f(x)), 0})
g
, where g is a non-negative integer, is a more

general improvement statistic. Increasing g increases the global scope of the criteria by rewarding

in the expectation extra variability at x. For example, g = 0 leads to E[I0(x)] = Pr(I(x) > 0)

(assuming the convention 00 = 0), g = 1 yields the standard statistic, and g = 2 explicitly rewards

the improvement variance since E[I2(x)] = var[I(x)] + E[I(x)]2. We have experienced some success

with a g that varies throughout the optimization, decreasing as the process converges. In all of our

examples, the algorithm begins with g = 2, and this changes to g = 1 once the maximum APPS step

size (max{∆k1, . . ., ∆kL} from Section 2.1) drops below 0.05. However, we have found the algorithm

to be robust to this choice, and a fixed g has not been observed to hurt performance. Expected

improvement surfaces E[Ig(x)] with g = 1 and g = 2, for both the Shubert and Rosenbrock problems,

are illustrated in Figure 3 conditional on a TGP fit to the first 75 iterates of an optimization run. The

surfaces show only a subtle difference in structure across the different g parametrization, however

this can lead to substantially different search patterns based on the ranking algorithm which we

now describe.

The TGP generated search pattern will consist of m locations that maximize (over a discrete

candidate set) the expected multi-location improvement, E [Ig(x1, . . . , xm)], where

Ig(x1, . . . , xm) = (max{(fmin − f(x1)), . . . , (fmin − f(xm)), 0})
g

(4)

(Schonlau et al., 1998). Finding the maximum expectation of (4) will, in most situations, be

difficult and expensive. In particular, it is impossible to do so for the full posterior distribution

of Ig(x1, . . . , xm), and would require conditioning on a single fit for the parameters of TGP. Our

proposed solution is to discretize the d-dimensional input space onto a dense candidate set X̃ of

M locations. Although optimization over this set will not necessarily lead to the optimal solution

in the underlying continuous input space, the use of APPS for local search means that such exact

optimization is not required.

The discretization of decision space allows for a fast iterative solution to the optimization of

E [Ig(x1, . . . , xm)]. This begins with evaluation of the simple improvement Ig(x̃i) over x̃i ∈ X̃ at

each of T MCMC iterations (each corresponding to a single posterior realization of TGP parameters

13

0.0 0.5 1.0 1.5

3

8

4

5

7

2

1

6

910

0

1

2

3

4

0.0 0.5 1.0 1.5

8

1

3

5

9

7

4

6

2

10

−8 −4 0 4 8

8

9

7

2

51

6

4

3

10

−10

−5

0

5

10

−8 −4 0 4 8

8

9

5

6
7
1

3

10

4
2

X1

X2

Figure 3: Expected improvement surfaces E[Ig(x)] and ranks of the top ten candidate locations, for the
Rosenbrock (top) and Shubert (bottom) problems, conditional on TGP fit to 75 function evaluations.
The left hand plots correspond to g = 1 and the right hand plots to g = 2.

and predicted response) to obtain the posterior sample

I =

Ig(x̃1)1 . . . Ig(x̃M)1

...

Ig(x̃1)T . . . Ig(x̃M)T

. (5)

We then proceed iteratively to build an ordered search pattern of m locations: Designate x1 =

argmaxx̃∈X̃E [Ig(x̃)], and for j = 2, . . . , m, given that x1, . . . , xj−1 are already included in the

14

search pattern, the next member is

xj = argmaxx̃∈X̃E [max{Ig(x1, . . . , xj−1), Ig(x̃)}]

= argmaxx̃∈X̃E[(max{(fmin − f(x1)), . . . , (fmin − f(xj−1)), (fmin − f(x̃)), 0})
g
]

= argmaxx̃∈X̃E [Ig(x1, . . . , xj−1, x̃)] .

Thus, after each j-th additional point is added to the set, we have the maximum expected j location

improvement conditional on the first j − 1 locations. This is not necessarily the unconditionally

maximal expected j location improvement; instead, the point xj is the location which will cause

the greatest increase in expected improvement over the given j − 1 location expected improvement.

Note that the above expectations are all taken with respect to the posterior sample I, which acts

as a discrete approximation to the true posterior distribution for improvement at locations within

the candidate set. Hence, iterative selection of the point set is possible without any re-fitting of the

TGP model. It follows that x1 = x̃i1 , the first location to be included in the search pattern, is such

that the average of the i1-th column of I is greater than every other column average. Conditional

on the inclusion of xi1 in the search pattern, a posterior sample of the two-location improvement

statistics is calculated as

I2 =

Ig(x̃i1 , x̃1)1 . . . Ig(x̃i1 , x̃M)1

...

Ig(x̃i1 , x̃1)T . . . Ig(x̃i1 , x̃M)T

, (6)

where the element in the t-th row and j-th column of this matrix is calculated as max{Ig(x̃i1)t,

Ig(x̃j)t}. The second location in the search pattern, x2 = x̃i2 , is then chosen such that the i2-th

column of I2 is the column with greatest mean. Similarly, Il, for l = 3, . . . , m, has element (t, j)

equal to max{Ig(x̃i1 , . . . , x̃il−1)t, Ig(x̃j)t} = Ig(x̃i1 , . . . , x̃il−1 , x̃j)t and the l-th location included

in the search pattern corresponds to the column of this matrix with maximum average. Since the

multi-location improvement is always at least as high as the improvement at any subset of those

locations, the same points will not be chosen twice for inclusion.

15

An appealing byproduct of this technique is that the search pattern has been implicitly ordered,

producing a ranked set of locations that will be placed in the queue for evaluation. The ten top-

ranked points corresponding to this algorithm, based on a TGP fit to the first 75 iterations of

Rosenbrock and Shubert problem optimizations, are shown in Figure 3. We note that the rankings

are significantly different depending on whether g = 1 or g = 2.

For this method to be successful, the candidate set needs to be suitably dense over the input

space. In the physics and engineering problems that motivate this paper, there is typically prior

information from experimentalists or modelers on where the optimum would be found. This in-

formation can be expressed through a probability density u(x) over the input space, which will be

referred to throughout as the uncertainty distribution. In the case that the uncertainty distribution

is bounded, as is standard, the candidate set can be drawn as a Latin hypercube sample (LHS,

e.g. McKay, Beckman, and Conover, 1979) proportional to u. This produces a space filling design

that is more concentrated in areas where the optimum is expected, and is thus an efficient way to

populate the candidate set. There are many different LHS techniques available, and Stein (1987)

discusses approaches to obtain LHS for variables that are either independent or dependent in u. In

the event of strong prior information, techniques such as Latin Hyperrectangles can be used (Mease

and Bingham, 2006). In practice, the prior beliefs regarding optimum inputs are often expressed

independently for each variable in the form of bounds and, possibly, a point-value best guess. The

sampling design is then easily formed by taking independent LHS in each dimension of the domain,

either uniform over the variable bounds or proportional to a scaled and shifted Beta distribution

with mode at the prior best guess.

We have also found it efficient to augment the large LHS of candidate locations X̃LHS with

a dense sample of locations X̃B from a rectangular neighborhood around the present best point.

The combined candidate set X̃ has then been drawn proportional to a distribution based on prior

beliefs about the optimum solution with an additional point mass placed on the region around the

present best point. In the examples and applications presented in this paper, the candidate set is

always an LHS of size 50 times the input dimension, taken with respect to a uniform distribution

over the bounded input space, augmented by an additional 10% of the candidate locations taken

16

from a smaller LHS bounded to within 5% of the domain range of the present best point.

3.2 Initial design and sensitivity analysis

A search of the input space is commonly used before optimization begins in order to tune algorithm

parameters (such as error tolerance) and choose starting locations. The variety of search designs

employed to this end includes simple random sampling, regular grids, and orthogonal arrays, among

other approaches. If a statistician is to be involved in the optimization, the initial set of function

evaluations is additionally desirable to inform statistical prediction. Seeding TGP through a space

filling initial design (as opposed to using only points generated by APPS) ensures that the initial

sample set is not concentrated in a local region of the input space. From this perspective, the initial

search is a designed experiment over the input space. The literature on this subject is vast (see for

example, Santner et al., 2003, Chap 5, and references therein) and specific application could depend

on the modeling approach. In all of our work, the initial sample is drawn as an LHS proportional to

the uncertainty distribution as described above in Section 3.1. An initial sample size of ten times

the input dimension has been found to be successful in practice.

In addition to acting as a training set for the statistical emulator, an initial sample of function

evaluations may be used as the basis for a global sensitivity analysis (SA), which resolves the sources

of objective function output variability by apportioning elements of this variation to different sets

of input variables (Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, and Tarantola,

2008). In particular, the variability of the response is investigated with respect to variability of in-

puts as dictated by u, the uncertainty distribution (as in Section 3.1, this refers to a prior distribution

on the location of the optimum). In large engineering problems there can be a huge number of input

variables over which the objective is to be optimized, but only a small subset will be influential

within the confines of their uncertainty distribution. Thus, SA is important for efficient optimiza-

tion and it may be performed, at relatively little additional cost, on the basis of a statistical model

fit to the initial sample. Two influential sensitivity indices, which will be useful in this setting, are

the first-order sensitivity for the jth input variable, Sj = varu (Eu [f(x)|xj]) /varu(f(x)), and the

total sensitivity for input j, Tj = Eu [varu (f(x)|x−j)] /varu(f(x)). The first-order indices measure

17

x1 x2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

First−order

x1 x2

Total effect

x1 x2

First−order

x1 x2

Total effect
 Rosenbrock Shubert

Figure 4: Sensitivity analysis of the test functions, with respect to independent uniform uncertainty
distributions over each input range, from a TGP fit to an LHS of 20 initial locations, summarized by
samples of the first order and total sensitivity indices.

the portion of variability that is due to variation in the main effects for each input variable, while

the total effect indices measure the total portion of variability that is due to variation in each input.

The difference between Tj and Sj provides a measure of the variability in f(x) due to interaction

between input j and the other input variables, and a large difference may lead the investigator

to consider other sensitivity indices to determine where this interaction is most influential. Refer

to Chapter 8 of Saltelli, Chan, and Scott (2000) and Saltelli et al. (2008) for descriptions of the

complete analysis framework and practical guidelines on the use of sensitivity analysis.

Estimation of the integrals needed in calculation of the sensitivity indices usually requires a

large number of function evaluations. Saltelli (2002) describes an efficient LHS based scheme for

estimation of both first-order and total effect indices, but the required number of function evalua-

tions will still be prohibitively large for applications involving an expensive simulation. However,

using predicted response from the statistical emulator in place of true objective function response,

it is possible to obtain sensitivity index estimates conditional on only the initial sample of function

evaluations. Our approach is to use the Monte Carlo estimation procedure of Saltelli (2002) in

conjunction with prediction from the TGP statistical emulator, conditional on an initial sample of

function evaluations. At each iteration of the MCMC model fitting, response predictions are drawn

over a set of input locations generated as prescribed in Saltelli’s scheme, and estimates for the in-

dices are calculated based upon this predicted response. The procedure was performed for the two

18

example problems, and results are shown in Figure 4. From the large difference between first-order

and total sensitivity indices for the Shubert function, it is clear that interaction between the two

input variables is responsible for almost all of the variability in response. Conversely, the sample

of Rosenbrock function total sensitivity indices is virtually identical to the sample of first-order

indices. This is caused by a response variability that is dominated by change due to variation in

x1 (i.e., dominated by the steep valley walls of the response surface). If such a situation occurred

in an expensive real-world optimization, one may wish to fix x2 at a prior guess in order to avoid a

lengthy optimization along the gradually sloping valley floor. We feel that this MCMC approach to

SA is appealing due to the full posterior sample obtained for each sensitivity index, but one could

also use maximum likelihood or empirical Bayes methodology to analytically calculate the indices

of interest conditional on a statistical model fit to the initial sample, as in Morris, Kottas, Taddy,

Furfaro, and Ganapol (2008) or Oakley and O’Hagan (2004).

3.3 Parallel computing environment

Our approach involves three distinct processes: LHS initialization, TGP model fit and point ranking

via MCMC, and APPS local optimization. The hybridization used in this paper is loosely coupled,

in that the three different components run independently of each other. This is beneficial from a

software development perspective, since each component can be based on the original source code

(in this case, the publicly available APPSPACK and tgp software). Our scheme is a combination of

sequential and parallel hybridization; the algorithm begins with LHS sampling, followed by TGP

and APPS in parallel. APPS and TGP run, for the most part, independently of each other. TGP

relies only upon the growing cache of function evaluations, with the sole tasks during MCMC being

model fit and the ranking of candidate locations. Similarly, ranked input sets provided by TGP are

interpreted by APPS in an identical fashion to other trial points and are ignored after evaluation

unless deemed better than the current best point. Thus, neither algorithm is aware that a concurrent

algorithm is running in parallel. However, the algorithm does contain an integrative component in

the sense that points submitted by TGP are given a higher priority and are hence placed at the

front of the queue when available.

19

Figure 5: Schematic illustration of the hybrid parallel implementation for TGP-APPS (MPI is the
message passing interface, a protocol for parallel computation.

We support hybrid optimization using a mediator/citizen/conveyor paradigm. Citizens are

used to denote arbitrary optimization tools or solvers: in this case, LHS, TGP, and APPS. They

communicate with a single mediator object, asynchronously exchanging unevaluated trial points for

completed function evaluations. The mediator ensures that points are evaluated in a predefined

order specified by the user, iteratively sending trial points from an ordered queue to free processors

via a conveyor object. Three basic steps are performed iteratively: 1) exchange evaluated points

for unevaluated points with citizens, 2) prioritize the list of requested evaluations, and 3) exchange

unevaluated points for evaluated points. This process continues until either a maximum budget of

evaluations has been reached or all citizens have indicated they are finished. The conveyor seeks to

maximize the efficient use of available evaluation processors and to minimize processor idle time.

The conveyor also maintains a function value cache that lexicographically stores a history of all

completed function evaluations using a splay tree as described in Gray and Kolda (2006); this

prevents a linear increase in look up time. Thus, prior to submitting a point to be evaluated, the

cache is queried to ensure that the given point (or a very close location) has not previously been

evaluated. If the point is not currently cached, a second query is performed to determine if an

equivalent point is currently being evaluated. If the trial point is deemed to be completely new, it

is then added to the evaluation queue. Equivalent points are just assigned the previously returned

(or soon to be returned) objective value.

20

In the version of this algorithm utilized herein, the LHS citizen is given highest priority and

hence has all points evaluated first. Because TGP is, in the presented applications, slower to submit

points than APPS, it is given the second highest priority. Finally, the APPS citizen has free use of

all evaluation processors not currently being used by either LHS or TGP. In this paradigm, TGP

globalizes the search process while APPS is used to perform local optimization. The APPS local

convergence occurs naturally due to the time spent during MCMC in which no points are being

generated by TGP. Conveniently, due to a growing cache and thus more computationally intensive

MCMC, the available window for local convergence increases during progression of the optimization.

Although we have found this scheme to be quite successful, it may be necessary in other applications

to allow APPS generated trial points to be given priority over TGP points when local convergence is

desired (e.g., when approaching the computational budget or when the probability of improvement

in a new area of the domain is sufficiently small).

Figure 5 illustrates the flow of trial points from the citizens, through the mediator, to the

conveyor, and back to the citizens. The stream of trial-points is asynchronous in the sense that

citizens can always submit points at each iteration. Here Q1, Q2, and Q3 denote trial points

submitted by citizens LHS, TGP, and APPS respectively, while Q is used to denote the ordered list

of trial points given to the conveyor and R stores recently completed evaluations. Note that the

TGP citizen worker stores a copy of the cache, since it lives on its own processor. In the illustrated

algorithm, K + 2 processors are being used: one for the mediator, conveyor and APPS; one for

the TGP citizen worker; and K evaluation processors. Present implementations of APPS cannot

efficiently use more than 2d + 1 evaluation processors, with d the dimension of the optimization

problem, however extra available processors will always be useful to evaluate additional points from

the TGP generated search pattern. Three processors are the minimum required for proper execution

of the algorithm: one which serves as the mediator, one for APPS, and one for TGP.

3.4 Results for example problems

We have recorded the results from ten optimizations of each example function, using stand-alone

APPS as well as the hybrid TGP-APPS, both with and without an initial LHS of 20 points. Each

21

of these were run on seven of the eight available computation nodes on a Mac Pro with 2 quad core

3.2 GHz processors. Parametrization of the algorithm follows the directions detailed in Sections

2.2 and 3.1, and each TGP generated search pattern consists of 20 locations. Except when initial

sampling is used to determine a starting location, the initial guess for each problem is x = (4, 4).

In order to replicate the situation of a relatively expensive objective function, random wait times

of between five and ten seconds were added to each function evaluation.

Table 1 contains average solutions and number of evaluations, and Figure 1 shows a selection

of traces of xbest plotted over the response surfaces. For the Rosenbrock problem, we see that

APPS required a vast increase in computational expense over TGP-APPS methods and was unable

to locate the global minimum. Thus, in a problem designed to be difficult for local optimization

methods, the hybrid algorithm offers a clear advantage by allowing the search to jump to optimal

areas of the input domain. Conversely, the Shubert function is designed to be especially problematic

for global optimization algorithms. Indeed, we observe that TGP-APPS required more iterations

to locate a minimum than APPS alone. However, the increase in the number of evaluations is much

less than one would observe for a truly global optimization algorithm such as simulated annealing

or genetic search. Note that the higher average Shubert solution for APPS is due only to one

particularly poor optimization wherein the pattern search converged on a local minimum of -48.51

after 28 iterations. The potential for such non-optimal convergence highlights the advantage of extra

robustness and global scope provided by the hybrid TGP-APPS, with the cost being a doubling of

the required function evaluations.

Figure 6 shows an objective function response trace during TGP-APPS (with initial LHS) op-

timization of the Rosenbrock and Shubert problems. The Rosenbrock trace plot is particularly

informative, highlighting a property of TGP-APPS that we have repeatedly observed in practice.

In the early part of the optimization, where there is much room for improvement over the present

best point, the emulator chosen locations correspond to decent response values and are commonly

found to be the next best point. As the optimization approaches convergence, the improvement

values are driven entirely by predictive uncertainty, leading to a wide search of the input space

and almost no probability that the next best point will have been proposed by the emulator. For

22

Table 1: Rosenbrock and Shubert problem results. For each optimization algorithm, the average and
standard deviation (in brackets) for the number of function evaluations required and objective response
at converged solution from a sample of ten runs.

Method Problem Evaluations Solution

APPS Rosenbrock 13918.3 (331.7) 0.0664 (0)

APPS-TGP (no LHS) Rosenbrock 965.2 (845.7) 0.0213 (0.0162)

APPS-TGP (with LHS) Rosenbrock 526.9 (869.3) 0.0195 (0.0227)

APPS Shubert 81.2 (18.9) -172.91 (43.7)

APPS-TGP (no LHS) Shubert 206.0 (46.75) -186.73 (0)

APPS-TGP (with LHS) Shubert 180.7 (47.03) -186.73 (0)

0 50 100 150

0
50

0
10

00
15

00
20

00

0 50 100 150 200 250

−
20

0
−

10
0

0
50

10
0

Iteration

O
b

je
ct

iv
e

Figure 6: Objective function response trace during TGP-APPS optimization of the Rosenbrock (top)
and Shubert (bottom) problems. Black points were generated by the TGP ranking algorithm, and
grey points are generated by the APPS search component.

23

example, in the Rosenbrock optimization, most of iterations 111 to 130 (corresponding to points

generated by the TGP ranking algorithm) led to objective response greater than 2000 (and do not

appear on the plot). When this happens, the efficient local optimization of APPS will drive the

optimization, leading to a quick and precise local convergence. In this way, each of APPS and

TGP contribute their strengths to the project. Indeed, it may be desirable in future applications

to devise a scheme whereby the priority for evaluation of TGP generated locations is downgraded

once the posterior probability of non-zero improvement reaches some minimal level.

4 OPTIMIZATION OF A TRANSISTOR SIMULATOR

We now discuss the optimization problem of calibrating a radiation-aware simulation model for

an electrical device component of a circuit. In this case, the goal of the optimization is to find

appropriate simulator parameter values such that the resulting simulator output is as close as

possible (under the distance function defined in (7), below) to results from real-world experiments

involving the electrical devices of interest. The model input is a radiation pulse expressed as dose

rate over time. The corresponding output is a curve of current value over time which reflects the

response of the electrical device. The electrical devices, both bipolar junction transistors (bjts),

are the bft92a and the bfs17a. Bjts are widely used in the semiconductor industry to amplify

electrical current (refer to Sedra and Smith (1997) or Cogdell (1999) for more information), and

the two in this study are particularly common. All bjts share a basic underlying model, and thus

the same computer simulator can be used to approximate their behavior, with only changes to the

tuning parameters required. The real-world data, to which simulated current response is compared,

consists of six observations taken at a variety of testing facilities. In each experiment, the devices

of interest are exposed to a unique radiation photo-current pulse and the resulting current behavior

is recorded. Additional details about the experiments carried out, the experimental process, and

the facilities used can be found in Gray et al. (2007). It should also be noted that selecting an

appropriate subset of the real-world data was a problem unto itself and is described in Lee, Taddy,

and Gray (2008).

The particular simulator of interest is a Xyce implementation of the Tor Fjeldy photo-current

24

0

0.2

0.4

0.6

0.8

1

First−order Total effect

x1 x2 x3 x4 x5 x6 x7 x8

0

0.2

0.4

0.6

0.8

1

x1 x2 x3 x4 x5 x6 x7 x8

Figure 7: Sensitivity analysis for bft92a (top) and bfs17a (bottom) devices, based on a TGP fit to an
LHS of 160 initial locations, summarized by first order sensitivity indices (left) and total sensitivity
indices (right).

model for the bjt. Xyce is an electrical circuit simulator developed at Sandia National Laboratories

(Keiter, 2004), and the Tor Fjeldy photo-current model is described in detail in Fjeldy, Ytterdal,

and Shur (1997). There are 38 user-defined tuning parameters which determine simulator output

for a given radiation pulse input. The objective function for optimization is the following measure

of distance between simulator output and experimental observation of current paths in time for a

set of specific radiation pulse inputs:

f(x) =

N∑

i=1

1

Ti

Ti∑

t=1

[
(Si(t; x) − Ei(t))2]

. (7)

Here, N = 6 is the number of experiments (each corresponding to a unique radiation pulse), Ti is

the total number of time observations for experiment i, Ei(t) is the amount of electrical current

observed during experiment i at time t, and Si(t; x) is the amount of electrical current at time

t as computed by the simulator with tuning parameters x and radiation pulse corresponding to

experiment i.

Through discussion with experimentalists and researchers familiar with the simulator, 30 of the

25

tuning parameters were fixed in advance to values either well known in the semiconductor industry or

determined through analysis of the device construction. The semiconductor engineers also provided

bounds for the remaining eight parameters, our objective function input x. This parameter set

includes those that are believed to have both a large overall effect on the output of the model and

a high level of uncertainty with respect to their ideal values. The most uncertain parameters in the

radiation-aware model are those that directly affect the amount of radiation collected, and these

eight parameters are all part of the device doping profile. The doping process introduces impurities

to change the electrical properties of the device and the amount of doping will affect the amount

of photo-current that is collected by the device. Four of the parameters (x1, x2, x3, x4) describe

the lightly doped collector while the other four (x5, x6, x7, x8) describe the heavily doped collector.

Figure 7 shows the results of an MCMC sensitivity analysis, as described in Section 3.2, based on a

TGP model fit to an initial LHS of 160 input locations and with respect to a uniform uncertainty

distribution over the bounded parameter space. As the mean total effect indices are all above 0.1,

it was decided that further reduction of the problem dimension was impossible. We note that, as

indicated by the difference between first-order and total sensitivity indices, some variables are only

influential in interaction with the other inputs.

The objective of (7) was optimized using both APPS and the hybrid algorithm TGP-APPS. The

problems were initiated with the same starting values, the best guess provided by the semiconductor

engineer, and were run on a cluster using 8 compute nodes with dual 3.06 GHz Intel Xenon processors

with 2 GB of RAM. In the case of the hybrid algorithm, initial Latin hypercube samples of 160

points were used to inform the TGP. All LHS designs are taken with respect to independent uniform

distributions over the bounded input space. The wall clock time and the number of objective

function evaluations corresponding to each device and each optimization algorithm are shown in

Table 3. Figure 8 shows simulated current response curves corresponding to each solution and to

the initial guess for tuning parameter values, as well as the data, for a single radiation pulse input

to each device. The initial guess represents the best values known to the experimentalists before the

optimization was done. Results for the other radiation pulse input values exhibit similar properties.

In the case of bft92a, the solutions produced by the two optimization algorithms are practically

26

0 10 20 30 40 50

−
4

−
3

−
2

−
1

0

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Time in 10e−6 seconds

C
u

rr
e

n
t

in
 1

0
e

−
4

 a
m

p
s

Figure 8: Simulated response current curves, corresponding to different tuning parameter values, for
the bft92a (left) and bfs17a (right) devices. The solid line shows response for parameters found using
TGP-APPS, the dashed line for parameters found through APPS alone, and the dotted line for the
initial parameter vector guess. The experimental current response curves for the radiation impulse
used in these simulations is shown in grey.

Table 2: Initial guesses and final solutions for bft92a and bfs17a simulator parameters.

bft92a Initial APPS TGP-APPS bfs17a Initial APPS TGP-APPS

x1 5e-3 3.55e-3 3.55e-3 x1 5e-3 3.55e-3 3.55e-3
x2 1.4e-3 1.08e-3 1.30e-3 x2 1.4e-3 1.30e-3 1.30e-3
x3 1e-8 1.00e-9 1.00e-9 x3 1e-6 1.00e-6 1.00e-9
x4 2e-8 6.15e-8 6.40e-8 x4 2e-6 1.00e-5 1.00e-5
x5 4e-3 3.55e-3 2.63e-3 x5 4e-3 3.55e-3 3.55e-3
x6 1.6e-3 1.30e-3 1.30e-3 x6 1.6e-3 1.30e-3 1.20e-3
x7 1e-9 1.61e-7 2.17e-7 x7 1e-7 1.00e-5 1.19e-6
x8 2e-9 1.00e-5 1.00e-5 x8 2e-7 2.00e-7 1.00e-5

Table 3: For each bjt device and each optimization algorithm, the number of objective function
evaluations, total wall clock time required to find a solution, and the optimized objective response.

Method Device Evaluations Time Objective

APPS bft92a 6823 341257 sec ≈ 95 hrs 2.01644e-2

APPS-TGP bft92a 962 49744 sec ≈ 14 hrs 2.01629e-2

APPS bfs17a 811 37038 sec ≈ 10 hrs 3.22625e-2

APPS-TGP bfs17a 1389 65122 sec ≈ 18 hrs 2.73194e-2

27

indistinguishable. However, the APPS solution was only obtained after a huge additional compu-

tational expense, illustrating the ability of the hybrid algorithm to move the search pattern quickly

into decent areas of the input space. We note that a similarly low computational time (56815 sec-

onds ≈ 16 hours) was required to obtain an equivalent solution through TGP-APPS without the

initial sampling (i.e., starting from the same parameter vector as for APPS).

For the bfs17a, the difference in the resulting response curves is striking and illustrates the

desirable robustness of our hybrid algorithm. The response curve created using the parameter

values obtained by APPS alone differs significantly from the data in overall shape. In contrast, the

curve resulting from the parameters found by TGP-APPS is a better match to the experimental

data. These results suggest that the APPS algorithm was unable to overcome a weak local minimum

while the inclusion of TGP allowed for a more comprehensive search of the design space. Overall,

the APPS-TGP required more computational resources to find a solution. However, due to the

poor quality of the APPS solution, the optimization would have needed to be re-run using different

starting points until a more optimal solution were found, leading to computational cost quickly

surpassing that of TGP-APPS. Thus, the extra computational cost of TGP-APPS is well justified

by the improvement in fit and the ability to find a robust solution with just one starting point.

Table 2 shows the converged optimal parametrization for each device through the use of each of

APPS and TGP-APPS with an LHS initial sample. As illustrated in Figure 8, a perfect solution

was unobtainable. The lack of fit is partially attributed to a disconnect between the actual and

simulated radiation pulses – a pre-specified pulse appears to tend to be larger than expected in

the lab, leading to a muted simulation response curve for equivalent doses. This situation may

also have led to incorrect bounds on the potential input domain. However, both the modelers and

experimentalists were pleased with the improvement in fit provided by TGP-APPS. In fact, for this

real-world problem, the solutions presented in this paper are the best known to date. A complete

statistical calibration of this simulator would require the modeling of a bias term, as in the work

of Kennedy and O’Hagan (2001); however, in the context of optimum control, we are confident

that these results provide a robust solution with respect to minimization of the provided objective

function. Indeed, the robustness of TGP-APPS allows the modelers to be confident that these

28

solutions are practically as close as possible to the true current response curves. This discovery has

convinced Sandia that the issues behind these inadequacies in the simulator model will merit future

study.

5 CONCLUSION

We have described a novel algorithm for statistically guided pattern search. Along with the general

optimization methodology described in Sections 3.2 and 3.3, this work outlines a powerful framework

within which the strengths of both statistical inference and pattern search are utilized. The general

hybridization scheme, as well as the algorithm for statistically ranking candidate locations, do

not require the use of APPS or TGP specifically and could be implemented in conjunction with

alternative local search or statistical emulation approaches. The methodology herein thus provides

a general framework for statistically robust local optimization. Our algorithm will almost always

lead to a more robust solution than that obtained through local pattern search, and we have also

observed that it can provide faster optimization in problems that are difficult for local methods.

Although we have focused on deterministic objective functions, the optimization algorithm is

directly applicable to optimization in the presence of random error. Changes to the nugget param-

eter prior specification are all that is required for TGP to model noisy data, and APPS adapts for

observation error by increasing the tolerance δ in the sufficient decrease criterion (refer to Section

2.1). Since the primary stopping criterion is based on step length, and step length decreases with

each search that does not produce a new best point, δ ensures that evaluations are not wasted

optimizing noise.

An appealing aspect of any oracle scheme is that, since points are given in addition to those

generated by the pattern search, there is no adverse affect on the local convergence. In the setting

of robust optimization, either with or without observation error, there are two additional major

criteria by which convergence will be assessed. First, the converged solution should not lie on a

knifes edge portion of the response surface. Second, the response at this solution needs to be close to

the global optimum. In each case, the statistical emulator provides guidance as to the acceptability

of any converged solution. Informally, the mean predictive surface allows the optimizer to judge the

29

shape of the response around the solution and the magnitude of the optimum with respect to other

potential optima around the input space. And the full accounting of TGP uncertainty provides a

measure of the level of confidence that may be placed in this predicted surface. Formally, quantiles of

predicted improvement are a precise measure for the risk of a significantly better alternate optimum

at unobserved locations. For example, a 95th percentile for improvement I(x) which is zero over the

input domain would support a claim that the converged solution corresponds to a global optima.

Future work in this direction could lead to substantial contributions in applied optimization.

References

Alexandrov, N., Dennis, J. E., Lewis, R. M., and Torczon, V. (1998). “A trust region framework for

managing the use of approximation models in optimization.” Structural Optimization, 15, 16–23.

Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and Trosset, M. W. (1999).

“A rigorous framework for optimization of expensive functions by surrogates.” Structural and

Multidisciplinary Optimization, 17, 1–13.

Chipman, H., George, E., and McCulloch, R. (1998). “Bayesian CART model search (with discus-

sion).” Journal of the American Statistical Association, 93, 935–960.

— (2002). “Bayesian treed models.” Machine Learning , 48, 303–324.

Cogdell, J. R. (1999). Foundations of Electronics. Prentice Hall.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). “Bayesian prediction of deterministic

functions, with applications to the design and analysis of computer experiments.” Journal of the

American Statistical Association, 86, 953–963.

Fang, K.-T., Li, R., and Sudjianto, A. (2006). Design and modeling for computer experiments. Boca

Raton: Chapman & Hall/CRC.

Fjeldy, T. A., Ytterdal, T., and Shur, M. S. (1997). Introduction to device modeling and circuit

simulation. Wiley-InterScience.

30

Fowler, K. R., Reese, J. P., Kees, C. E., Dennis, J. E., Jr., Kelley, C. T., Miller, C. T., Audet, C.,

Booker, A. J., Couture, G., Darwin, R. W., Farthing, M. W., Finkel, D. E., Goblansky, J. M.,

Gray, G. A., and Kolda, T. G. (2008). “A Comparison of derivative-free optimization methods

for water supply and hydraulic capture community problems.” Advances in Water Resources,

31, 743–757.

Gramacy, R. B. (2007). “tgp: An R package for Bayesian nonstationary, semiparametric nonlinear

regression and design by treed Gaussian process models.” Journal of Statistical Software, 19.

Gramacy, R. B. and Lee, H. K. H. (2008). “Bayesian treed Gaussian process models with an

application to computer modeling.” Journal of the American Statistical Association, 103, 1119–

1130.

Gray, G. A. and Kolda, T. G. (2006). “Algorithm 856: APPSPACK 4.0: Asynchronous parallel

pattern search for derivative-free optimization.” ACM T. Math. Software, 32, 3, 485–507.

Gray, G. A. et al. (2007). “Designing dedicated experiments to support validation and calibration

activities for the qualification of weapons electronics.” In Proceedings of the 14th NECDC . Also

available as Sandia National Laboratories Technical Report SAND2007-0553C.

Green, P. (1995). “Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination.” Biometrika, 82, 711–732.

Hedar, A.-R. and Fukushima, M. (2006). “Tabu Search directed by direct search methods for

nonlinear global optimization.” European Journal of Operational Research, 127, 2, 329–349.

Higdon, D., Kennedy, M., Cavendish, J., Cafeo, J., and Ryne, R. (2004). “Combining field data and

computer simulations for calibration and prediction.” SIAM Journal of Scientific Computing ,

26, 448–466.

Jones, D., Schonlau, M., and Welch, W. (1998). “Efficient global optimization of expensive black-

box functions.” Journal of Global Optimization, 13, 455–492.

Keiter, E. R. (2004). “Xyce parallel elctronic simulator design: mathematical formulation.” Sandia

National Laboratories Technical Report SAND2004-2283.

31

Kennedy, M. and O’Hagan, A. (2001). “Bayesian calibration of computer models.” Journal of the

Royal Statistical Society, Series B Statistical Methodology , 63, 425–464.

Kolda, T. G. (2005). “Revisiting asynchronous parallel pattern search for nonlinear optimization.”

SIAM J. Optimiz., 16, 2, 563–586.

Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). “Optimization by direct search: new perspec-

tives on some classical and modern methods.” SIAM Review , 45, 385–482.

— (2006). “Stationarity results for generating set search for linearly constrained optimization.”

SIAM J. Optimiz., 17, 4, 943–968.

Lee, H. K. H., Taddy, M., and Gray, G. A. (2008). “Selection of a representative sample.” Tech. Rep.

UCSC-SOE-08-12, University of California, Santa Cruz, Department of Applied Mathematics and

Statistics. Also available as Sandia National Labs Report SAND2008-3857J.

McKay, M., Beckman, R., and Conover, W. (1979). “A comparison of three methods for selecting

values of input variables in analysis of output from a computer code.” Technometrics, 21, 239–

245.

Mease, D. and Bingham, D. (2006). “Latin hyperrectangle sampling for computer experiments.”

Technometrics, 48, 467–477.

Morris, R. D., Kottas, A., Taddy, M., Furfaro, R., and Ganapol, B. (2008). “A statistical framework

for the sensitivity analysis of radiative transfer models.” IEEE Transactions on Geoscience and

Remote Sensing , 12, 4062–4074.

Oakley, J. and O’Hagan, A. (2004). “Probabilistic sensitivity analysis of complex models: a Bayesian

approach.” Journal of the Royal Statistical Society, Series B , 66, 751–769.

O’Hagan, A., Kennedy, M. C., and Oakley, J. E. (1998). “Uncertainty analysis and other inference

tools for complex computer codes.” In Bayesian Statistics 6 , eds. J. M. Bernardo, J. O. Berger,

A. P. Dawid, and A. F. M. Smith, 503–524. Oxford University Press.

32

Regis, R. G. and Shoemaker, C. A. (2007). “Improved strategies for radial basis function methods

for global optimization.” J. of Global Optimization, 37, 1, 113–135.

Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989). “Design and analysis of computer

experiments.” Statistical Science, 4, 409–435.

Saltelli, A. (2002). “Making best use of model evaluations to compute sensitivity indices.” Computer

Physics Communications, 145, 280–297.

Saltelli, A., Chan, K., and Scott, E., eds. (2000). Sensitivity analysis. John Wiley and Sons.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and

Tarantola, S. (2008). Global sensitivity analysis: The primer . John Wiley & Sons.

Santner, T., Williams, B., and Notz, W. (2003). The design and analysis of computer experiments.

Springer-Verlag.

Schonlau, M., Welch, W., and Jones, D. (1998). “Global versus local search in constrained optimiza-

tion of computer models.” In New Developments and Applications in Experimental Design, eds.

N. Flournoy, W. F. Rosenberger, and W. K. Wong, 11–25. Institute of Mathematical Statistics.

Sedra, A. S. and Smith, K. C. (1997). Microelectronic Circuits. 4th ed. Oxford University Press.

Stein, M. (1987). “Large sample properties of simulations using Latin Hypercube sampling.” Tech-

nometrics, 143–151.

Wright, M. H. (1996). “Direct search methods: Once scorned, now respectable.” In Numerical

Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis),

eds. D. F. Griffiths and G. A. Watson, vol. 344 of Pitman Research Notes in Mathematics,

191–208. CRC Press.

33

